Embossing of Metal Inserts for Subsequent Assembly Injection Moulding of Media Tight Electronic Systems

Article Preview

Abstract:

Due to the increasing number of electronics in several industrial sectors, especially in the automotive industry, there is a rising demand for flexible and adaptable electronic systems with high functional density and resilience. An efficient method for producing such parts is the encapsulation of metal inserts, for example lead frames, by means of assembly injection moulding. Often such parts are exposed to water and moist at the place of action. Thus, one major challenge is to provide electronics with enduring media tightness in a severe environment. The research work covered in this paper focuses on embossing surface structures in metal inserts for subsequent assembly injection moulding. The influence of geometrical parameters of the embossed profile on both the material flow and the accuracy of the created structure are investigated. For this purpose experimental as well as numerical results are presented. Furthermore, the performance of embossed inserts in subsequent assembly injection moulding is analysed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-106

Citation:

Online since:

March 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Chitkara, W. Ballhaus, B. Kliem, S. Berings, B. Weiss, Spotlight on Automotive - PwC Semiconductor Report, (2013).

Google Scholar

[2] G. Gotzmann, Werkstoffe mit Multifunktionen, Kunststoffe 92 (2002) 6, p.97–108.

Google Scholar

[3] G. W. Ehrenstein, Handbuch Kunststoff-Verbindungstechnik, first ed., Hanser, München, (2004).

Google Scholar

[4] C. Heinle, M. Vetter, Z. Brocka-Krzeminska, G. W. Ehrenstein, D. Drummer, Tight Material Bonds within Mechatronic Systems by Assembly Moulding, J. Plast. Technol. 5 (2009) 6, p.428–450.

Google Scholar

[5] G. W. Ehrenstein, Mediendichte elektrische Durchleitungen im Spritzgießverfahren, in: J. Song (Eds. ), Proc. 2. Symposium Connectors, 2009, p.51–61.

Google Scholar

[6] T. Fellner; J. Wilde, Beständige, dichte Metall-Kunststoff-Verbindungen an Premolded Gehäusen, (2008).

Google Scholar

[7] M. Geiger, M. Kleiner, R. Eckstein, N. Tiesler, U. Engel, Microforming, Annals of the CIRP 50 (2001) 2, p.445–462.

DOI: 10.1016/s0007-8506(07)62991-6

Google Scholar

[8] H. Ike, Surface deformation vs. bulk plastic deformation—a key for microscopic control of surfaces in metal forming, J. Mater. Process. Technol. 138 (2003) 1-3, p.250–255.

DOI: 10.1016/s0924-0136(03)00080-3

Google Scholar

[9] M. Thome, G. Hirt, B. Rattay, Metal Flow and Die Filling in Coining of Micro Structures with and without Flash, Adv. Mater. Res. (2005) 6-8, p.631–638.

Google Scholar

[10] T. Stellin, R. van Tijum, M. Merklein, U. Engel, Study of Microforging of Parallel Ribs from Metal Strip, KEM (2014) 611-612, p.565–572.

DOI: 10.4028/www.scientific.net/kem.611-612.565

Google Scholar

[11] J. Böhm, A. Schubert, T. Otto, T. Burkhardt, Micro-metalforming with silicon dies, Microsystem Technologies 7 (2001) 4, p.191–195.

DOI: 10.1007/s005420000084

Google Scholar

[12] J. Mai, L. Peng, X. Lai, Z. Lin, Electrical-assisted embossing process for fabrication of micro-channels on 316L stainless steel plate, J. Mater. Process. Technol. 213 (2013) 2, p.314–321.

DOI: 10.1016/j.jmatprotec.2012.09.013

Google Scholar

[13] Information on https: /www. kupferinstitut. de/fileadmin/user_upload/kupferinstitut. de/de/Documents/Shop/Verlag/Downloads/Werkstoffe/brosch20. pdf [06. 10. 2014].

Google Scholar

[14] F. Ostermann, Anwendungstechnologie Aluminium, second ed., Springer, Berlin, (2007).

Google Scholar

[15] M. Thome, Umformtechnische Herstellung funktionaler flächiger Mikrostrukturen in metallischen Werkstoffen, in: Hirt, G.; Raabe, D.; Kopp, R. (Eds. ), Umformtechnische Schriften, Vol. 150, Shaker, Aachen, (2009).

Google Scholar