[1]
R. Boyer, G. Welsch, E.W. Collings, Materials properties handbook: Titanium alloys, ASM International, Materials Park Oh, (1994).
Google Scholar
[2]
N. Park, J. Yeom, Y. Na, Characterization of deformation stability in hot forging of conventional Ti–6Al–4V using processing maps, J. Mater. Process. Technol. 130–131 (2002) 540–545.
DOI: 10.1016/s0924-0136(02)00801-4
Google Scholar
[3]
Y.V.R.K. Prasad, T. Seshacharyulu, Processing maps for hot working of titanium alloys, Mater. Sci. Eng. A 243 (1998) 82–88.
DOI: 10.1016/s0921-5093(97)00782-x
Google Scholar
[4]
J. Luo, M. Li, W. Yu, H. Li, Effect of the strain on processing maps of titanium alloys in isothermal compression, Mater. Sci. Eng. A 504 (2009) 90–98.
DOI: 10.1016/j.msea.2008.10.020
Google Scholar
[5]
T. Seshacharyulu, S.C. Medeiros, W.G. Frazier, Y.V.R.K. Prasad, Hot working of commercial Ti–6Al–4V with an equiaxed α–β microstructure: materials modeling considerations, Mater. Sci. Eng. A 284 (2000) 184–194.
DOI: 10.1016/s0921-5093(00)00741-3
Google Scholar
[6]
Y.V.R. K Prasad, T Seshacharyulu, S. C Medeiros, W. G Frazier, Influence of oxygen content on the forging response of equiaxed (α+β) preform of Ti–6Al–4V: commercial vs. ELI grade, J. Mater. Process. Technol. 108 (2001) 320–327.
DOI: 10.1016/s0924-0136(00)00832-3
Google Scholar
[7]
S. Bruschi, S. Poggio, F. Quadrini, M.E. Tata, Workability of Ti–6Al–4V alloy at high temperatures and strain rates, Mater. Lett. 58 (2004) 3622-3629.
DOI: 10.1016/j.matlet.2004.06.058
Google Scholar
[8]
A. Momeni, S.M. Abbasi, Effect of hot working on flow behavior of Ti–6Al–4V alloy in single phase and two phase regions, Mater. Des. 31 (2010) 3599–3604.
DOI: 10.1016/j.matdes.2010.01.060
Google Scholar
[9]
R. G. Guan, Y. T. Je, Z. Y. Zhao, C. S. Lee, Effect of microstructure on deformation behavior of Ti–6Al–4V alloy during compressing process, Mater. Des. 36 (2012) 796–803.
DOI: 10.1016/j.matdes.2011.11.057
Google Scholar
[10]
J. Majta, Deformation and properties. Micro-alloyed steels. Selected problems, Ed. AGH University of Science and Technology, Krakow, Poland, 2008 (in Polish).
Google Scholar
[11]
J. Zhang, H. Di, H. Wang, K. Mao, T. Ma, Y. Cao, Hot deformation behavior of Ti-15-3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map, J. Mater. Sci. 47 (2012) 4000-4011.
DOI: 10.1007/s10853-012-6253-1
Google Scholar
[12]
Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Modeling of Dynamic Materials Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A 15 (1984) 1883-92.
DOI: 10.1007/bf02664902
Google Scholar
[13]
A. Łukaszek-Sołek, Technological aspect of processing maps for the AA2099 alloy, submitted to Acta Metall. Sin. (Engl. Lett. ) (2014).
DOI: 10.1007/s40195-014-0150-3
Google Scholar
[14]
Y.V.R.K. Prasad, S. Sasidhara, Hot working guide: A compendium of processing maps, ASM International, Materials Park OH, (1997).
Google Scholar
[15]
Y.V.R.K. Prasad, Processing maps: A status report, J. Mater. Eng. Perform. 12 (2003) 638-645.
Google Scholar