Effect of Continuous RCS Deformation on Microstructure and Properties of Copper and Copper Alloys Strips

Article Preview

Abstract:

The aim of this work was to study the microstructure and mechanical properties of copper, brass CuZn36 and bronze CuSn6 strips annealed and after repetitive corrugation and straightening (RCS) process. The influence of process parameters on the functional properties of strips was investigated. The study found an increase in the yield strength and tensile strength of the material after RCS process. Crystallite size measurement confirmed the presence of nanoscale structures in the studied materials after deformation by RCS process. The used method of plastic deformation is promising for development materials with improved functional properties. The paper presents also the results of numerical simulations of Cu strip after corrugation on groove and tooth rolls and next straightening. Rolling process simulations were conducted using Forge 2011® based on the finite element method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

294-303

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.H. Zhao, X.Z. Liao, Y.T. Zhu, Z. Horita, T.G. Langdon, Influence of stacking fault energy on nanostructure formation under high pressure torsion, Mater. Sci. Eng. A 410-411 (2005) 188-193.

DOI: 10.1016/j.msea.2005.08.074

Google Scholar

[2] R.Z. Valiev, T.G. Langdon, Developments in the use of ECAP processing for grain refinement, Rev. Adv. Mater. Sci. 13 (2006) 15-26.

Google Scholar

[3] V.M. Segal, Severe plastic deformation: simple shear versus pure shear, Mater. Sci. Eng. A338 (2002) 331-344.

DOI: 10.1016/s0921-5093(02)00066-7

Google Scholar

[4] J. Richert, M. Richert, A New Method for Unlimited Deformation of Metals and Alloys, Aluminium, 62, 8 (1986) 604-607.

Google Scholar

[5] M. Richert, B. Leszczynska, Ultrafine and nano-grained aluminium alloys formed by cyclic extrusion compression, Arch. Met. and Mat. 53 (2008) 721-726.

Google Scholar

[6] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scr. Mater. 39/9 (1998) 221-1227.

DOI: 10.1016/s1359-6462(98)00302-9

Google Scholar

[7] M. Kulczyk, W. Pachla, A. Mazur, M. Suś-Ryszkowska, N. Krasilnikov, K.J. Kurzydłowski, Producing bulk nanocrystalline materials by combined hydrostatic extrusion and equal-channel angular pressing, Mater. Sci. 25/4 (2007) 991-999.

Google Scholar

[8] S. Ch. Yoon, A. Krishnaiah, U. Chakkingal, H.S. Kim, Severe plastic deformation and strain localization in groove pressing, Comput. Mater. Sci. 43 (2008) 641-645.

DOI: 10.1016/j.commatsci.2008.01.007

Google Scholar

[9] J. Huang, Y. Zhu., H. Jiang, T. Lowe, Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening, Acta Mater. 49 (2001) 1497-1505.

DOI: 10.1016/s1359-6454(01)00069-6

Google Scholar

[10] Y. Zhu, J. Huang, H. Jiang, T. Lowe, Processing of bulk nanostructured copper by repetitive corrugation and straightening, The 2001 TMS Spring Meeting, New Orleans (2001).

Google Scholar

[11] J. Huang, Y. T. Zhu, D. J. Alexander, X. Liao, T. C. Lowe, R. J. Asaro, Development of repetitive corrugation and straightening, Mater. Sci. Eng. A 371 (2004) 35-39.

DOI: 10.1016/s0921-5093(03)00114-x

Google Scholar

[12] F. A. Mohamed, Y. Xun, Correlations between the minimum grain size produced by milling and material parameters, Mater. Sci. Eng. A354 (2003) 133-139.

DOI: 10.1016/s0921-5093(02)00936-x

Google Scholar

[13] H. -J. Fecht, Nanostructure formation by mechanical attrition, NanoStruct. Mater. 6 (1995) 33-42.

Google Scholar

[14] Mishra, V. Richard, F. Gregori, R.J. Asaro, M.A. Mayers, Microstructural evolution in copper processed by severe plastic deformation, Mater. Sci. Eng. A 410-411 (2005) 290-298.

DOI: 10.1016/j.msea.2005.08.201

Google Scholar

[15] M. A. Meyers, V. F. Nesterenko, J. C. LaSalvia, Q. Xue, Shear localization in dynamic deformation of materials: microstructural evolution and self-organization, Mater. Sci. Eng. A317 (2001) 204-225.

DOI: 10.1016/s0921-5093(01)01160-1

Google Scholar

[16] Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, T.G. Langdon, Influence of stacking fault energy on minimum grain size achieved in severe plastic deformation, Mater. Sci. Eng. A 463 (2007) 22-26.

DOI: 10.1016/j.msea.2006.08.119

Google Scholar

[17] Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon and Y.T. Zhu, Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu-Zn alloys, Mater. Sci. Eng. A 493 (2008) 123-129.

DOI: 10.1016/j.msea.2007.11.074

Google Scholar

[18] K. S. Kumar, H. Van Swygenhoven, S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater. 51 (2003) 5743-5774.

DOI: 10.1016/j.actamat.2003.08.032

Google Scholar

[19] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Ultrafine grained strip of CuCr0, 6 alloy prepared by CRCS method, J. Achiev. Mater. Manuf. Eng. 33/2 (2009) 166-172.

Google Scholar

[20] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Microstructure and properties of CuNi2Si1 alloy processed by continuous RCS method, J. Achiev. Mater. Manuf. Eng. 37/2 466 (2009).

Google Scholar

[21] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Microstructure evolution in CRCS processed strips of CuCr0, 6 alloy, J. Achiev. Mater. Manuf. Eng. 38/2 (2010) 195-202.

Google Scholar

[22] J. Stobrawa, Z. Rdzawski, W. Głuchowski, W. Malec, Ultrafine grained strips of precipitation hardened copper alloys, Arch. Metall. Mater. 56 (2011) 171-179.

DOI: 10.2478/v10172-011-0020-1

Google Scholar

[23] Forge2011, Transvalor S. A.

Google Scholar