Structural, Electrical, and Resistance Force Characteristics of Ga-In-Sn Eutectic Alloys

Article Preview

Abstract:

This work aims at investigating the electrical property and the friction force of Ga-In-Sn eutectic alloys. The performance of the alloys is increasingly needed on conducting lubricant. Resistance force dependence of normal force was examined by atomic force microscopy, and the results showed that Ga65In21Sn14 had the highest friction coefficient of 3.07 and Ga80In13Sn7 had a lowest friction coefficient of 1.46. Electrical resistivity of the studied eutectic alloy was from 25.9 to 27.7 μΩcm at 25°C. Accordingly, the electrical resistivity as a function of temperature revealed a temperature coefficient of ranging from 12.67 ✕10-3 °C-1 to 4.94 ✕10-3 °C-1. High thermally stable and wetting capability make the studied Ga-In-Sn alloys can potentially be used as a conducting lubricant.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

162-167

Citation:

Online since:

April 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. G. Burton and R. A. Burton: IEEE Trans. Comp., Hybrids, Manufact. Technol., 11 (1998), p.112.

Google Scholar

[2] R.A. Reich, P.A. Stewart, J. Bohaychick and J.A. Urbanski: Lubr. Eng., 49 (2003), p.16.

Google Scholar

[3] B.A. Omotowa, B.S. Phillips, J.S. Zabinski and J.M. Shreeve: Inorg. Chem., 43 (2004), p.5466.

Google Scholar

[4] C. Jin, C. Ye, B.S. Phillips, J.S. Zabinski, X. Liu, W. Liu and J.M. Shreeve: J. 
Mater. Chem., 16 (2006), p.1529.

Google Scholar

[5] S. Mudry and I. Shtablavyi: Rev. Adv. Mater. Sci., 23 (2010), p.102.

Google Scholar

[6] M.E. Van Valkenburg, R.L. Vaughn, M. Williams and J.S. Wilkes, , in Proc. 13th Int. Symp. Molten Salts, ed. P.C. Trulove, H.C. De Long, R.A. Mantz, G.R. Stafford and M. Matsunaga, Ionic liquis as thermal fluids, The Electrochemical Society, Pennington, NJ, (2002).

Google Scholar

[7] D. H. Buckley and R. L. Johnson: ASLE Trans., 6 (1963), p.1.

Google Scholar

[8] H. Liu and B. Bhushan: Ultramicroscopy, 97 (2007), p.321.

Google Scholar

[9] A.L. Weisenhorn, P. Maivald, H.J. Butt and P.K. Hansma: Phys. Rev., B45 (1992), p.11226.

Google Scholar

[10] W.R. Ronk, D.V. Kowalski, M. Manning and G.M. Nathanson: J. Chem. Phys., 104 (1996), p.4842.

Google Scholar

[11] H. Tostmann, E. DiMasi, P.S. Pershan, B.M. Ocko, O.G. Shpyrko and M. Deutsch: Phys. Rev., B59 (1999), p.783.

DOI: 10.1103/physrevb.59.783

Google Scholar

[12] M.J. Regan, H. Tostmann, P.S. Pershan, O.M. Magnussen, E. DiMasi, B.M. Ocko and M. Deutsch: Phys. Rev., B55 (1997), p.10786.

DOI: 10.1103/physrevb.55.10786

Google Scholar

[13] A. Grigoriev, O Shpyrko, C. Steimer, P.S. Pershan, B.M. Ocko, M. Deutsch, B. Lin, M. Meron, T. Graber and J. Gebbardt: Surf. Sci., 595 (2005), p.223.

DOI: 10.1016/j.susc.2004.10.034

Google Scholar

[14] R. A. Burton and R. G. Burton: Proceedings of the Thirty Fourth Meeting of the IEEE Holm Conference (1988), p.187.

Google Scholar

[15] G. Kumar and K. N. Prabhu: Advances in Colloid and Interface Science, 133 (2007), p.61.

Google Scholar

[16] R.C. Thomas, J.E. Houston, R.M. Crooks, T. Kim and T.A. Michalske: J. Am. Chem. Soc., 117 (1995), p.3830.

Google Scholar

[17] T. Han, J.M. Williams and T.P. Beebe Jr.: Anal. Chim. Acta, 307 (1995), p.365.

Google Scholar