Key Engineering Materials
Vols. 656-657
Vols. 656-657
Key Engineering Materials
Vol. 655
Vol. 655
Key Engineering Materials
Vol. 654
Vol. 654
Key Engineering Materials
Vols. 651-653
Vols. 651-653
Key Engineering Materials
Vol. 650
Vol. 650
Key Engineering Materials
Vol. 649
Vol. 649
Key Engineering Materials
Vol. 648
Vol. 648
Key Engineering Materials
Vol. 647
Vol. 647
Key Engineering Materials
Vols. 645-646
Vols. 645-646
Key Engineering Materials
Vol. 644
Vol. 644
Key Engineering Materials
Vol. 643
Vol. 643
Key Engineering Materials
Vol. 642
Vol. 642
Key Engineering Materials
Vol. 641
Vol. 641
Key Engineering Materials Vol. 648
Paper Title Page
Abstract: The essence of the axle coupling vibration in case of random bridge deck is random vibration, therefore, it is quite necessary to research the effect of vehicle impact on basis of statistic analysis. With some large concrete-filled steel tube arch bridge as the object, by applying a self-made analysis program on axle coupling vibration that was demonstrated by a dynamic test, a dynamic response analysis on axle was implemented for many groups of random roughness swatches. On basis of the analysis result, a statistic analysis was conducted for the dynamic impact effect of bridge under the conditions of different deck status and vehicle speeds, in the determination of vehicle speed and roughness, the impact factor obeys the normal distribution. The analysis result shows that, the level of deck status may apparently affect the mean value and the MSD(mean square deviation), the differences of vehicle impact factors in case of different assurance rates are large. It will effectively improve the reasonableness and scientificalness of the value of a vehicle impact factor to determine the impact factor according to the level of bridge importance and a statistic analysis method.
80