[1]
W.F. Hosford, T.J. Allen, Twinning and directional slip as a cause for a strength differential effect, Metallurgical Transactions, 4 (1973) 1424-1425.
DOI: 10.1007/bf02644545
Google Scholar
[2]
D. Hasenpouth, C. Salisbury, A. Bardelcik, M.J. Worswick, Constitutive behavior of magnesium alloy sheet at high strain rates, in: Dymat 2009:, Vol 2, E D P Sciences, 2009, pp.1431-1435.
DOI: 10.1051/dymat/2009202
Google Scholar
[3]
I. Ulacia, C.P. Salisbury, I. Hurtado, M.J. Worswick, Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures, Journal of Materials Processing Technology, 211 (2011).
DOI: 10.1016/j.jmatprotec.2010.09.010
Google Scholar
[4]
C. Dørum, O. Sture Hopperstad, O. -G. Lademo, M. Langseth, An experimental study on the energy absorption capacity of thin-walled castings, International Journal of Impact Engineering, 32 (2006) 702-724.
DOI: 10.1016/j.ijimpeng.2005.02.002
Google Scholar
[5]
P.D. Beggs, W. Song, M. Easton, Failure modes during uniaxial deformation of magnesium alloy AZ31B tubes, International Journal of Mechanical Sciences, 52 (2010) 1634-1645.
DOI: 10.1016/j.ijmecsci.2010.08.005
Google Scholar
[6]
F. Zhu, C.C. Chou, K.H. Yang, X. Chen, D. Wagner, S. Bilkhu, Application of AM60B magnesium alloy material model to structural component crush analysis, International Journal of Vehicle Safety, 6 (2012) 178-190.
DOI: 10.1504/ijvs.2012.049025
Google Scholar
[7]
M.N. Mekonen, D. Steglich, J. Bohlen, L. Stutz, D. Letzig, J. Mosler, Experimental and numerical investigation of Mg alloy sheet formability, Materials Science and Engineering: A, 586 (2013) 204-214.
DOI: 10.1016/j.msea.2013.07.088
Google Scholar
[8]
J. Bohlen, M.R. Nuernberg, J.W. Senn, D. Letzig, S.R. Agnew, The texture and anisotropy of magnesium–zinc–rare earth alloy sheets, Acta Mater., 55 (2007) 2101-2112.
DOI: 10.1016/j.actamat.2006.11.013
Google Scholar
[9]
D. Steglich, X. Tian, J. Bohlen, T. Kuwabara, Mechanical Testing of thin Sheet Magnesium Alloys in biaxial Tension and uniaxial Compression, Experimental Mechanics, 54 (2014) 1247-1258.
DOI: 10.1007/s11340-014-9892-0
Google Scholar
[10]
D. Ghaffari Tari, M.J. Worswick, U. Ali, M.A. Gharghouri, Mechanical response of AZ31B magnesium alloy: Experimental characterization and material modeling considering proportional loading at room temperature, International Journal of Plasticity, 55 (2014).
DOI: 10.1016/j.ijplas.2013.10.006
Google Scholar
[11]
R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London A, 193 (1948) 281-297.
Google Scholar
[12]
F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S. -H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets-part 1: theory, Int. J. Plast., 19 (2003) 1297-1319.
DOI: 10.1016/s0749-6419(02)00019-0
Google Scholar
[13]
F. Bron, J. Besson, A yield function for anisotropic materials: Application to aluminium alloys, Int. J. Plast., 20 (2004) 937-963.
DOI: 10.1016/j.ijplas.2003.06.001
Google Scholar
[14]
O. Cazacu, B. Plunkett, F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast., 22 (2006) 1171-1194.
DOI: 10.1016/j.ijplas.2005.06.001
Google Scholar
[15]
H. Hooputra, H. Gese, H. Dell, H. Werner, A comprehensive failure model for crashworthiness simulation of aluminium extrusions, International Journal of Crashworthiness, 9 (2004) 449–463.
DOI: 10.1533/ijcr.2004.0289
Google Scholar
[16]
D. Steglich, X. Tian, J. Bohlen, S. Riekehr, N. Kashaev, K.U. Kainer, N. Huber, Experimental and numerical crushing analyses of thin-walled magnesium profiles, International Journal of Crashworthiness, (2015).
DOI: 10.1080/13588265.2014.996319
Google Scholar