Prediction of Crashworthiness for Extruded Magnesium Materials

Article Preview

Abstract:

To assess the crashworthiness of simple wrought magnesium structures, the axial deformation behaviour of different square tubes produced from magnesium alloys AZ31 and ZE10 were numerically investigated under quasi-static compressive loading conditions. Finite-element simulations were conducted to predict and assess the plastic buckling and crush behaviour. The necessary data to determine parameters for the plastic potential were taken from compression tests conducted along different orientations. The yield function Hill48 was selected, despite its inability to capture the strength differential effect. The modelling approach pursued is justified by considering the mechanical loading conditions, the fabrication process of the profiles and its implication on strain anisotropy, balancing achievable accuracy and computational efforts. The simulation results revealed that the material work hardening rates evidenced in uniaxial compression tests influenced the buckling modes as well as the energy dissipation.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

1009-1014

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.F. Hosford, T.J. Allen, Twinning and directional slip as a cause for a strength differential effect, Metallurgical Transactions, 4 (1973) 1424-1425.

DOI: 10.1007/bf02644545

Google Scholar

[2] D. Hasenpouth, C. Salisbury, A. Bardelcik, M.J. Worswick, Constitutive behavior of magnesium alloy sheet at high strain rates, in: Dymat 2009:, Vol 2, E D P Sciences, 2009, pp.1431-1435.

DOI: 10.1051/dymat/2009202

Google Scholar

[3] I. Ulacia, C.P. Salisbury, I. Hurtado, M.J. Worswick, Tensile characterization and constitutive modeling of AZ31B magnesium alloy sheet over wide range of strain rates and temperatures, Journal of Materials Processing Technology, 211 (2011).

DOI: 10.1016/j.jmatprotec.2010.09.010

Google Scholar

[4] C. Dørum, O. Sture Hopperstad, O. -G. Lademo, M. Langseth, An experimental study on the energy absorption capacity of thin-walled castings, International Journal of Impact Engineering, 32 (2006) 702-724.

DOI: 10.1016/j.ijimpeng.2005.02.002

Google Scholar

[5] P.D. Beggs, W. Song, M. Easton, Failure modes during uniaxial deformation of magnesium alloy AZ31B tubes, International Journal of Mechanical Sciences, 52 (2010) 1634-1645.

DOI: 10.1016/j.ijmecsci.2010.08.005

Google Scholar

[6] F. Zhu, C.C. Chou, K.H. Yang, X. Chen, D. Wagner, S. Bilkhu, Application of AM60B magnesium alloy material model to structural component crush analysis, International Journal of Vehicle Safety, 6 (2012) 178-190.

DOI: 10.1504/ijvs.2012.049025

Google Scholar

[7] M.N. Mekonen, D. Steglich, J. Bohlen, L. Stutz, D. Letzig, J. Mosler, Experimental and numerical investigation of Mg alloy sheet formability, Materials Science and Engineering: A, 586 (2013) 204-214.

DOI: 10.1016/j.msea.2013.07.088

Google Scholar

[8] J. Bohlen, M.R. Nuernberg, J.W. Senn, D. Letzig, S.R. Agnew, The texture and anisotropy of magnesium–zinc–rare earth alloy sheets, Acta Mater., 55 (2007) 2101-2112.

DOI: 10.1016/j.actamat.2006.11.013

Google Scholar

[9] D. Steglich, X. Tian, J. Bohlen, T. Kuwabara, Mechanical Testing of thin Sheet Magnesium Alloys in biaxial Tension and uniaxial Compression, Experimental Mechanics, 54 (2014) 1247-1258.

DOI: 10.1007/s11340-014-9892-0

Google Scholar

[10] D. Ghaffari Tari, M.J. Worswick, U. Ali, M.A. Gharghouri, Mechanical response of AZ31B magnesium alloy: Experimental characterization and material modeling considering proportional loading at room temperature, International Journal of Plasticity, 55 (2014).

DOI: 10.1016/j.ijplas.2013.10.006

Google Scholar

[11] R. Hill, A theory of the yielding and plastic flow of anisotropic metals, Proc. Roy. Soc. London A, 193 (1948) 281-297.

Google Scholar

[12] F. Barlat, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, D.J. Lege, F. Pourboghrat, S. -H. Choi, E. Chu, Plane stress yield function for aluminum alloy sheets-part 1: theory, Int. J. Plast., 19 (2003) 1297-1319.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[13] F. Bron, J. Besson, A yield function for anisotropic materials: Application to aluminium alloys, Int. J. Plast., 20 (2004) 937-963.

DOI: 10.1016/j.ijplas.2003.06.001

Google Scholar

[14] O. Cazacu, B. Plunkett, F. Barlat, Orthotropic yield criterion for hexagonal closed packed metals, Int. J. Plast., 22 (2006) 1171-1194.

DOI: 10.1016/j.ijplas.2005.06.001

Google Scholar

[15] H. Hooputra, H. Gese, H. Dell, H. Werner, A comprehensive failure model for crashworthiness simulation of aluminium extrusions, International Journal of Crashworthiness, 9 (2004) 449–463.

DOI: 10.1533/ijcr.2004.0289

Google Scholar

[16] D. Steglich, X. Tian, J. Bohlen, S. Riekehr, N. Kashaev, K.U. Kainer, N. Huber, Experimental and numerical crushing analyses of thin-walled magnesium profiles, International Journal of Crashworthiness, (2015).

DOI: 10.1080/13588265.2014.996319

Google Scholar