[1]
L. Janicek, Cold forming of bolts without thermal treatment, J Mat. Proc. Technol. 125-126 (2002) 341-346.
Google Scholar
[2]
F. Borsetto et al, Accurate Modelling of the Forming Process Chain to predict Cold Forged Component Geometry, Proc. Metal Forming (2008) 820-825.
Google Scholar
[3]
K. Truetsch, P. Werner, Schadensvorhersage bei der Schraubenherstellung anhand von FEM-Simulationen, Tagungsband zur vierten Sommerschule Umformtechnik, Leoben (2009) 41-45.
Google Scholar
[4]
B. Buchmayr et al, Werkstoff- und verfahrenstechnische Optimierung bei der Herstellung hochfester Schrauben, BHM 153 Jg., Heft 11 (2008) 423-429.
DOI: 10.1007/s00501-008-0415-0
Google Scholar
[5]
T. Hatzenbichler, B. Buchmayr, Simulation des Kopfstauchens unter Berücksichtigung des Vorzugs, Tagungsband zur vierten Sommerschule Umformtechnik, Leoben (2009) 73-79.
Google Scholar
[6]
R. Kaiser et al, A new concept to design drawing tools with respect to central damage; Wiley-VCH Verlag GmbH & Co KGaA, Weinheim (2012) 1387-1390.
Google Scholar
[7]
K. Yoshida, T. Sugiyama, Analysis of the Straightening of drawn Wires using Rollers by the Finite Element method, Wire J. Intern. May (2008) 52-56.
Google Scholar
[8]
L.M. Geng, R.H. Wagoner, Springback analysis with a modified hardening model, SAE Technical Paper 2000-01-0768, Sheet Metal Forming: SingTang65th Anniversary Volume, SP-1536, SAE, (2000).
DOI: 10.4271/2000-01-0768
Google Scholar
[9]
L. Geng, R.H. Wagoner, Role of plastic anisotropy and its evolution on springback, Int. J. Mech. Sci. 44 (2002) 123-148.
DOI: 10.1016/s0020-7403(01)00085-6
Google Scholar
[10]
P.G. Hodge, A new method of analyzing stresses and strains in work hardening plastic solids, J. Appl. Mech. 24 (1957) 482-483.
DOI: 10.1115/1.4011571
Google Scholar
[11]
G. Schleinzer, Residual Stress Formation During Roller Straightening of Rails, Fortschritt-Berichte VDI, Reihe 18, Nr. 251, VDI Verlag Düsseldorf, (2000).
Google Scholar
[12]
J.L. Chaboche et al, Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel, Proc. SMIRT-5, Berlin, (1979).
Google Scholar
[13]
J.L. Chaboche, Time-independent constitutive theories for cyclic plasticity, Int. J. Plast. 2 (1986) 149-188.
DOI: 10.1016/0749-6419(86)90010-0
Google Scholar
[14]
J.L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plast. 5 (1989) 247-302.
DOI: 10.1016/0749-6419(89)90015-6
Google Scholar
[15]
N.N., Marc Volume A, Theory and user information, MSC Software GmbH (2010) 473.
Google Scholar
[16]
B. Buchmayr et al, Werkstoff- und verfahrenstechnische Optimierung bei der Herstellung hochfester Schrauben, Berg- und Hüttenmännische Monatshefte 153. Jg. Vol. 11 (2008) 423-429.
DOI: 10.1007/s00501-008-0415-0
Google Scholar
[17]
N.N., Abaqus Analysis User`s Manual, Abaqus 6. 12 Simulia, Providence (2012), chapter 23. 2. 2, fig. 23. 2. 2-8.
Google Scholar
[18]
N.N., Marc Volume C, Program Input, MSC Software GmbH (2010) 908.
Google Scholar
[19]
M. G. Cockroft, D. J. Latham, Ductility and the workability of metals, Journal of the Institute of Metals, 96 (1968) 33-39.
Google Scholar
[20]
S. F. Nielsen et al, A conical slit for three-dimensional XRD mapping, J. Synchrotron Rad. 7 (2000) 103-109.
DOI: 10.1107/s0909049500000625
Google Scholar
[21]
L. Clapham et al, Characterization of texture and residual stress in a section of 610 mm pipeline steel, NDT&E International, Vol. 28, No. 2 (1995) 73-82.
DOI: 10.1016/0963-8695(94)00005-5
Google Scholar
[22]
G. Winter et al, Triaxial residual stresses in thermomechanically rolled seamless tubes characterized by high-energy synchrotron x-ray diffraction, Proceedings of the 2013 ASME Pressure Vessels & Piping Conference: ASME 2013 PVP, Paris, PVP2013-97963 (2013).
DOI: 10.1115/pvp2013-97963
Google Scholar