Virtual Process Design for Cold Formed Components

Article Preview

Abstract:

Finite element models optimizing cold forged products have to incorporate the complete manufacturing pathway. Virtual process design as a method based on a multistep operation approach can describe interacting phenomena. Thus, inheritance effects like residual stress and damage evolution can be tracked throughout the processing chain. Besides the influence of the deformation direction (Bauschinger Effect) on material flow can be predicted. Using intermediate step optimization may also extend geometrical limits. Furthermore it may increase life time and improve material efficiency for a given component. The exploitation of these coupling effects may also form a basis for further product and process innovations.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

1279-1284

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Janicek, Cold forming of bolts without thermal treatment, J Mat. Proc. Technol. 125-126 (2002) 341-346.

Google Scholar

[2] F. Borsetto et al, Accurate Modelling of the Forming Process Chain to predict Cold Forged Component Geometry, Proc. Metal Forming (2008) 820-825.

Google Scholar

[3] K. Truetsch, P. Werner, Schadensvorhersage bei der Schraubenherstellung anhand von FEM-Simulationen, Tagungsband zur vierten Sommerschule Umformtechnik, Leoben (2009) 41-45.

Google Scholar

[4] B. Buchmayr et al, Werkstoff- und verfahrenstechnische Optimierung bei der Herstellung hochfester Schrauben, BHM 153 Jg., Heft 11 (2008) 423-429.

DOI: 10.1007/s00501-008-0415-0

Google Scholar

[5] T. Hatzenbichler, B. Buchmayr, Simulation des Kopfstauchens unter Berücksichtigung des Vorzugs, Tagungsband zur vierten Sommerschule Umformtechnik, Leoben (2009) 73-79.

Google Scholar

[6] R. Kaiser et al, A new concept to design drawing tools with respect to central damage; Wiley-VCH Verlag GmbH & Co KGaA, Weinheim (2012) 1387-1390.

Google Scholar

[7] K. Yoshida, T. Sugiyama, Analysis of the Straightening of drawn Wires using Rollers by the Finite Element method, Wire J. Intern. May (2008) 52-56.

Google Scholar

[8] L.M. Geng, R.H. Wagoner, Springback analysis with a modified hardening model, SAE Technical Paper 2000-01-0768, Sheet Metal Forming: SingTang65th Anniversary Volume, SP-1536, SAE, (2000).

DOI: 10.4271/2000-01-0768

Google Scholar

[9] L. Geng, R.H. Wagoner, Role of plastic anisotropy and its evolution on springback, Int. J. Mech. Sci. 44 (2002) 123-148.

DOI: 10.1016/s0020-7403(01)00085-6

Google Scholar

[10] P.G. Hodge, A new method of analyzing stresses and strains in work hardening plastic solids, J. Appl. Mech. 24 (1957) 482-483.

DOI: 10.1115/1.4011571

Google Scholar

[11] G. Schleinzer, Residual Stress Formation During Roller Straightening of Rails, Fortschritt-Berichte VDI, Reihe 18, Nr. 251, VDI Verlag Düsseldorf, (2000).

Google Scholar

[12] J.L. Chaboche et al, Modelization of the strain memory effect on the cyclic hardening of 316 stainless steel, Proc. SMIRT-5, Berlin, (1979).

Google Scholar

[13] J.L. Chaboche, Time-independent constitutive theories for cyclic plasticity, Int. J. Plast. 2 (1986) 149-188.

DOI: 10.1016/0749-6419(86)90010-0

Google Scholar

[14] J.L. Chaboche, Constitutive equations for cyclic plasticity and cyclic viscoplasticity, Int. J. Plast. 5 (1989) 247-302.

DOI: 10.1016/0749-6419(89)90015-6

Google Scholar

[15] N.N., Marc Volume A, Theory and user information, MSC Software GmbH (2010) 473.

Google Scholar

[16] B. Buchmayr et al, Werkstoff- und verfahrenstechnische Optimierung bei der Herstellung hochfester Schrauben, Berg- und Hüttenmännische Monatshefte 153. Jg. Vol. 11 (2008) 423-429.

DOI: 10.1007/s00501-008-0415-0

Google Scholar

[17] N.N., Abaqus Analysis User`s Manual, Abaqus 6. 12 Simulia, Providence (2012), chapter 23. 2. 2, fig. 23. 2. 2-8.

Google Scholar

[18] N.N., Marc Volume C, Program Input, MSC Software GmbH (2010) 908.

Google Scholar

[19] M. G. Cockroft, D. J. Latham, Ductility and the workability of metals, Journal of the Institute of Metals, 96 (1968) 33-39.

Google Scholar

[20] S. F. Nielsen et al, A conical slit for three-dimensional XRD mapping, J. Synchrotron Rad. 7 (2000) 103-109.

DOI: 10.1107/s0909049500000625

Google Scholar

[21] L. Clapham et al, Characterization of texture and residual stress in a section of 610 mm pipeline steel, NDT&E International, Vol. 28, No. 2 (1995) 73-82.

DOI: 10.1016/0963-8695(94)00005-5

Google Scholar

[22] G. Winter et al, Triaxial residual stresses in thermomechanically rolled seamless tubes characterized by high-energy synchrotron x-ray diffraction, Proceedings of the 2013 ASME Pressure Vessels & Piping Conference: ASME 2013 PVP, Paris, PVP2013-97963 (2013).

DOI: 10.1115/pvp2013-97963

Google Scholar