Formability of a Magnesium Alloy AZ31B Deformed under Channel Die Compression Tests: Macroscopic Shearing of Specimens

Article Preview

Abstract:

Channel die compression tests were performed at 175 °C on polycrystalline magnesium specimens AZ31B which present specific initial textures. Deformation stages up to 90% plastic deformation are considered. The specimens were defined initially by a specific angle characterizing the starting position of the majority of the <c> axes of the hexagonal phase in the experimental device. Stress-strain curves and the evolution of crystallographic textures (using X-ray diffraction measurements) are determined. A macroscopic shearing is observed for most of the investigated specimens. A phenomenological law is applied in order to describe the experimental true stress-strain curves. The identification of the parameters of the law indicates its good ability to reproduce the experimental curves.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

15-20

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Sarker, D.L. Chen, Texture transformation in an extruded magnesium alloy under pressure, Mater Sci Eng A 302 (2001) 37-45.

Google Scholar

[2] H. Francillette, B. Bacroix, M. Gaspérini, J.L. Béchade, Effect of initial textures on deformation mechanisms and texture evolutions of Zr polycrystals deformed by channel die compression tests, Mater Sci Eng A 234-236 (1997) 974-977.

DOI: 10.1016/s0921-5093(97)00410-3

Google Scholar

[3] M. Battaini, E.V. Pereloma, C.H.J. Davies, Orientation effect on mechanical properties of commercially pure titanium at room temperature, Metall Mater Trans A 38 (2007) 276-285.

DOI: 10.1007/s11661-006-9040-2

Google Scholar

[4] R. Gehrmann, M.M. Frommert, G. Gottstein, Texture effects on plastic deformation of magnesium, Mater Sci Eng A 395 (2005) 338-349.

DOI: 10.1016/j.msea.2005.01.002

Google Scholar

[5] H. Francillette, B. Bacroix, M. Gaspérini, J.L. Béchade, Grain orientation effects in Zr702 polycrystalline samples deformed in channel die compression at room temperature, Acta Mater 46 (1998) 4131-4142.

DOI: 10.1016/s1359-6454(98)00121-9

Google Scholar

[6] B. Orlans-Joliet, J.H. Driver, F. Montheillet, Plane strain compression of silicon-iron single crystals, Acta Metall Mater (1990) 581-594.

DOI: 10.1016/0956-7151(90)90212-y

Google Scholar

[7] J.H. Driver, Caractérisation du comportement des monocristaux, F. Moussy and P. Franciosi (Eds. ), Physique et Mécanique de la mise en forme des métaux, Presse du CNRS, IRSID, France 1990, pp.205-215.

DOI: 10.51257/a-v1-m660

Google Scholar

[8] M.J. Luton, C.M. Sellars, Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation, Acta Metall 17 (1969) 1033-1043.

DOI: 10.1016/0001-6160(69)90049-2

Google Scholar

[9] A. Laasraoui, J. Jonas, Prediction of steel flow stresses at high temperatures and strain rates, Metall Trans A 22 (1991) 1545-1558.

DOI: 10.1007/bf02667368

Google Scholar

[10] M.R. Barnett, C.H.J. Davies, X. Ma, An analytical constitutive law for twinning dominated flow in magnesium, Scripta Mater 52 (2005) 627-632.

DOI: 10.1016/j.scriptamat.2004.11.022

Google Scholar

[11] H. Francillette, A. Gavrus, R.A. Lebensohn, A constitutive law for the mechanical behavior of Zr702, J Mater Process Technol 142 (2003) 43-51.

DOI: 10.1016/s0924-0136(03)00439-4

Google Scholar

[12] J.E. Hockett, D.O. Sherby, Large strain deformation of polycrystalline metals at low homologous temperatures, J Mech Phys Solids 23 (1975) 87-98.

DOI: 10.1016/0022-5096(75)90018-6

Google Scholar

[13] D. Lloyd, D. Kenny, The structure and properties of some heavily cold worked aluminium alloys, Acta Metall, 28 (1980) 639-649.

DOI: 10.1016/0001-6160(80)90130-3

Google Scholar