Numerical Prediction of Internal Stresses due to Weaving

Article Preview

Abstract:

The increasing use of finite element simulation in the field of composite material forming involved in the past few years a large amount of research on the constitutive modelling of textile material at the mesoscopic scale (i.e. the scale of individual fiber tow). Up to now, the community interest was focused on a consistent shape prediction. Moreover, the large amount of contacts between yarns imposed the use of dynamic explicit approaches for numerical efficiency reasons. Recent advances in contact algorithms make now possible the use of implicit schemes. The present paper shows how a constitutive equation written and implemented in the dynamic explicit scheme with ABAQUS/Explicit is adapted to implicit one (i.e. ABAQUS/Standard), for large displacement analyses.Validation and perspectives are illustrated on a weaving operation.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

338-343

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.S. Parnas. Liquid Composite Molding. Hanser, Garner Publications, (2000).

Google Scholar

[2] E. Ruiz and F. Trochu, Flow modelling in composite reinforcements, In: Composite reinforcements for optimum performance, P. Boisse Eds. Woodhead Publishing in materials, 2011, 588-615.

DOI: 10.1533/9780857093714.4.588

Google Scholar

[3] E. Vidal-Sallé, P. Boisse, Modelling the structures and properties of woven fabrics, In: Modelling and predicting textile behaviour, X. Chen Eds. Woodhead Publishing in materials, 2010, 144-179.

DOI: 10.1533/9781845697211.1.144

Google Scholar

[4] O. Klinkova, S. Drapier, J.M. Bergheau, Characterization of cure-induced residual stresses, JEC Composites Magazine 67 (2011) 48-51.

Google Scholar

[5] N. Hamila, P. Boisse, Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element, Composites Part B: Engineering 39 (2008) 999-1010.

DOI: 10.1016/j.compositesb.2007.11.008

Google Scholar

[6] X.Q. Peng, J. Cao, A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics, Composites Part A: Applied Science and Manufacturing 36 (2005) 859-874.

DOI: 10.1016/j.compositesa.2004.08.008

Google Scholar

[7] A. Charmetant, J.G. Orliac, E. Vidal-Sallé, P. Boisse, Hyperelastic model for large deformation analyses of 3D interlock composite preforms, Composites Science and Technology 72 (2012) 1352-1360.

DOI: 10.1016/j.compscitech.2012.05.006

Google Scholar

[8] P. Badel, E. Vidal–Sallé, E. Maire, P. Boisse Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Composite Science and Technology. 68-12 (2008) 2433–2440.

DOI: 10.1016/j.compscitech.2008.04.038

Google Scholar

[9] M. Duhovic, D. Bahattacharyya, Simulating the deformation mechanisms of knitted fabric composites, Composites Part A: Applied Science and Manufacturing 37 (2006) 1897-(1915).

DOI: 10.1016/j.compositesa.2005.12.029

Google Scholar

[10] S. Nauman, I. Cristian, F. Boussu, X. Legrand, and V. Koncar, Geometrical characterization of orthogonal / layer-layer woven interlock carbon reinforcement, AUTEX 2009 World Textile Conference 26/05/2009-29/05/2009, Turkey, 682-691.

DOI: 10.1080/00405000.2014.937560

Google Scholar

[11] B. Lee, K.H. Leong, I. Herszberg, Effect of weaving on the tensile properties of carbon fibre tows and woven composites, Journal of Reinforced Plastics and Composites 20 (2001) 652-670.

DOI: 10.1177/073168401772679011

Google Scholar

[12] B. Lee, S. Rudov-Clark, A.P. Mouritz, M.K. Bannister, I. Herszberg, Effect of weaving damage on the tensile properties of three-dimensional woven composites, Composites Structures 57 (2002) 405-413.

DOI: 10.1016/s0263-8223(02)00108-3

Google Scholar

[13] A. Charmetant, E. Vidal-Sallé, P. Boisse, Hyperelastic modelling for mesoscopic analyses of composite reinforcements. Composites Science and Technology 71 (2011) 1623-1631.

DOI: 10.1016/j.compscitech.2011.07.004

Google Scholar

[14] K. Pickett, A.J. Sirtautas, A. Erber, Braiding simulation and prediction of mechanical properties, Applied Composite Materials 16 (2009) 345-364.

DOI: 10.1007/s10443-009-9102-x

Google Scholar

[15] P. Badel, S. Gauthier, E. Vidal-Sallé, P. Boisse, Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming, Composites: Part A 40 (2009) 997–1007.

DOI: 10.1016/j.compositesa.2008.04.015

Google Scholar

[16] T.J.R. Hughes, J. Winget, Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis. Int. J. Num. Meth. Eng. 15 (1980) 1862-1867.

DOI: 10.1002/nme.1620151210

Google Scholar

[17] B. Hagège, P. Boisse, J.L. Billoët, Finite element analyses of knitted composite reinforcement at large strain', European Journal of Computational Mechanics. 14 (2005) 767–776.

DOI: 10.3166/reef.14.767-776

Google Scholar

[18] P. Badel, E. Vidal-Sallé, P. Boisse, Large deformation analysis of fibrous materials using rate constitutive equations, Computers and Structures 86 (2008) 1164-1175.

DOI: 10.1016/j.compstruc.2008.01.009

Google Scholar

[19] J. Vilfayeau, D. Crepin, F. Boussu, D. Soulat, and P. Boisse, Kinematic Modelling of the Weaving Process applied to 2D fabric, Journal of Industrial Textiles, published online 25 April (2014).

DOI: 10.1177/1528083714532114

Google Scholar

[20] C. Florimond, J. Vilfayeau, E. Vidal-Sallé, P. Boisse, Numeric modelling of the fibrous material weaving process for composite material, ICCM19 28/07/2013-02/08/2013 Montreal (Canada).

Google Scholar

[21] J. Vilfayeau, Modélisation numérique du procédé de tissage des renforts fibreux pour matériaux composites, " PhD thesis, INSA Lyon 13/03/(2014).

Google Scholar

[22] C. Florimond, H. Ramezani-Dana, E. Vidal-Sallé, Identification of fibre degradation due to friction during the weaving process, Key Engineering Materials 554-557 (2013) 416-422.

DOI: 10.4028/www.scientific.net/kem.554-557.416

Google Scholar