Dry Forming of Aluminium Sheet Metal: Influence of Different Types of Forming Tool Microstructures on the Coefficient of Friction

Article Preview

Abstract:

In the sheet metal forming industry lubricants are applied in forming processes to expand the technological boundaries by reducing friction and wear. The friction between tool and sheet metal is crucial to the deep drawing process. Due to economic and ecological reasons the aim of the manufacturers is to reduce or even avoid the use of lubricants. Consequently, this approach enables both a shortening of the process chains and an essential saving of resources. The advantages of structured forming tools in lubricated processes concerning the reduction of the coefficient of friction by the appearance of lubricating micro pockets are well-known. However, without using any lubricant this effect does not work. In this case the contact area is reduced by structuring the forming tool which affects the tribological system.In this paper the influence of microstructures with different geometries and surface treatments (uncoated / a-C:H:Si-coating) on the coefficient of friction in dry metal forming of the alloy AA5182 is compared to the frictional behaviour of unstructured forming tools using lubricant as reference. Before coating, the forming tools are machined by milling to generate tribologically effective microstructures. With the use of a strip drawing plant the effects of different surface microstructures and materials on the coefficient of friction are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 651-653)

Pages:

516-521

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Moore, J. J. Willaman, Studies in greenhouse fumigation with hydrocyanic acid Physiological effects on the plant, J. Agric. Res. 11 (1917) 319–338.

Google Scholar

[2] United Nations, Agenda 21, the Rio Declaration on Environment and Development, Rio de Janeiro, (1992).

Google Scholar

[3] F. Vollertsen, F. Schmidt, Dry Metal Forming : Definition , Chances and Challenges, Int. J. Precis. Eng. Manuf. Technol. 1. 1 (2014) 1–4.

DOI: 10.1007/s40684-014-0009-0

Google Scholar

[4] K. Tamaoki, K. -I. Manabe, S. Kataoka, T. Aizawa, Electroconductive ceramic tooling for dry deep drawing, J. Mater. Process. Technol. 210. 1 (2010) 48–53.

DOI: 10.1016/j.jmatprotec.2009.08.020

Google Scholar

[5] S. Kataoka, M. Murakawa, T. Aizawa, H. Ike, Tribology of dry deep-drawing of various metal sheets with use of ceramics tools, Surf. Coatings Technol. 177–178 (2004) 582–590.

DOI: 10.1016/s0257-8972(03)00930-7

Google Scholar

[6] A. Mitsuo, T. Akhadejdamrong, T. Aizawa, Self-Lubrication of Cl-Implanted Titanium Nitride Coating for Dry Metal Forming, Mater. Trans. 44. 7 (2003) 1295–1302.

DOI: 10.2320/matertrans.44.1295

Google Scholar

[7] K. Osakada, R. Matsumoto, Fundamental Study of Dry Metal Forming with Coated Tools, CIRP Ann. Manuf. Technol. 49 (2000) 161–164.

DOI: 10.1016/s0007-8506(07)62919-9

Google Scholar

[8] K. Taube, Carbon-based coatings for dry sheet-metal working, Surf. Coatings Technol. 98. 1-3 (1998) 976–984.

DOI: 10.1016/s0257-8972(97)00178-3

Google Scholar

[9] M. Murakawa, N. Koga, T. Kumagai, Deep-drawing of aluminum sheets without lubricant by use of diamond-like carbon coated dies, Surf. Coatings Technol. 76–77. 2 (1995) 553–558.

DOI: 10.1016/0257-8972(95)02523-5

Google Scholar

[10] B. Wielage, A. Wank, C. Rupprecht, G. Schmidt, and S. Stark, Schichtentwicklung für die schmiermittelfreie Umformung von hochfesten Aluminiumwerkstoffen, Materwiss. Werksttech. 39. 12 (2008) 871–875.

DOI: 10.1002/mawe.200800398

Google Scholar

[11] V. Weihnacht, A. Brückner, S. Bräunling, ta-C beschichtete Werkzeuge für die Trockenumformung von Aluminiumblechen, Vak. Forsch. und Prax. 20. 3 (2008) 6–10.

DOI: 10.1002/vipr.200800356

Google Scholar

[12] M. Kleiner, K. Weinert, R. Krux, M. Kalveram, Oberflächenstrukturen für Blechumformwerkzeuge - Einfluss spanend hergestellter Werkzeug-Oberflächenstrukturen auf die tribologischen Verhältnisse, Werkstattstechnik online 93 (2003) 665–670.

DOI: 10.37544/1436-4980-2003-10-665

Google Scholar

[13] A. Mousavi, M. Schomäcker, A. Brosius, Macro and Micro Structuring of Deep Drawing Tools for Lubricant Free Forming, Procedia Eng. 81 (2014) 1890–1895.

DOI: 10.1016/j.proeng.2014.10.252

Google Scholar

[14] V. Franzen, J. Witulski, a. Brosius, M. Trompeter, A. E. Tekkaya, Textured surfaces for deep drawing tools by rolling, Int. J. Mach. Tools Manuf. 50. 11 (2010) 969–976.

DOI: 10.1016/j.ijmachtools.2010.08.001

Google Scholar

[15] M. Reihle, Verhalten des Gleitreibungskoeffizienten von Tiefziehblechen bei hohen Flächenpressungen, Dissertation, Technische Hochschule Stuttgart, Max-Planck-Institut für Metallforschung, (1959).

Google Scholar