Numerical Analysis for the Growth of Epitaxy Layer in a Large-Size MOCVD Reactor

Article Preview

Abstract:

A modified large-size MOCVD reactor is developed to produce uniform and large-volume epitaxy thin film layer of gallium nitride (GaN). The full governing equations for continuity, momentum, energy and chemical species are solved numerically. It is investigated how thermal flow field, and the operating parameters affect molar concentration of each reactant, and the thin film uniformity. These parameters are involved such as the chamber pressure (100-700 torr), susceptor rotation rate (100-800). In this paper, the simulation results from these listed parameters shows that an optimum epitaxy layer can be achieved in the large-size reactor.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 656-657)

Pages:

515-519

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. H. Evans, R. Greif, A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor, Numerical Heat Transfer 109 (1987) 928-935.

DOI: 10.1115/1.3248205

Google Scholar

[2] G. H. Evans, R. Greif, Effects of boundary conditions on the flow and heat transfer in a rotating disk chemical vapor reposition reactor, Numerical Heat Transfer. 12 (1987) 243-252.

DOI: 10.1080/10407788708913584

Google Scholar

[3] D. I. Fotiadis, S. Kieda, Transport Phenomena in Vertical Reactor for Metalorganic Vapor Phase Epitaxy, J. Crystal Growth. 102 (1990) 441.

DOI: 10.1016/0022-0248(90)90403-8

Google Scholar

[4] S. Patnaik, R. A. Brown, Hydrodynamic Dispersion in Rotation-Disk OMVPE Reactor: Numerical simulation and Experimental measurements, J. Crystal Growth. 96 (1989) 153.

DOI: 10.1016/0022-0248(89)90285-6

Google Scholar

[5] G. H. Evans, R. Greif, Forced flow near a heated rotating disk: A Similarity Solution, Numerical Heat Transfer 14 (1988) 373.

DOI: 10.1080/10407788808913650

Google Scholar

[6] B. Mitrovic, A. Gurary, L. Kadinski, On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters, Journal of Crystal Growth. 287 (2006) 656-663.

DOI: 10.1016/j.jcrysgro.2005.10.131

Google Scholar

[7] B. Mitrovic, A. Gurary, W. Quinn, Process conditions optimization for the maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling, Journal of Crystal Growth. 303 (2007) 323-329.

DOI: 10.1016/j.jcrysgro.2006.11.247

Google Scholar