Electrochemical Fabrication of Cu2O Photocathode for Photoelectrochemical Hydrogen Evolution Reaction

Article Preview

Abstract:

In this study, we can fabricate Cu2O on F-doped SnO2 coated glass (FTO) substrates as photocathode for hydrogen evolution reaction by electro-deposition techniques. Cyclic voltammetry as a new deposition method was studied to fabricate Cu2O photocathode in a mixed solution of Cu (NO3)2 and KNO3 under a condition of low temperature and without pH value adjustment. Amperometry as a previous method was used to compare for Cu2O electrode fabrication under the situation of pH adjustment and higher temperature condition. A photocurrent from hydrogen evolution reaction was performed by keep potential at-0.2 V in 0.1 M Na2SO4 under visible irradiation comparing with both fabricated method. The Cu2O photocathode from cyclic voltammetry deposition method presents photoelectrocatalytic activity higher than that of amperometry deposition method with the optimum conditions. This electro-deposition technique represents the excellent method with simple, fast and low cost of Cu2O photocathode fabrication for photoelectrochemical hydrogen evolution reaction.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

226-230

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.G. Kim, H.B. oh, H. Ryu, and W.J. Lee. Alloys and Compounds , 612 , (2014) 74.

Google Scholar

[2] Y.K. Hsu, C.H. Yu, Y.C. Chen, and Y.G. Lin. Power Sources , 242 , (2013) 541.

Google Scholar

[3] Y.K. Hsu, C.H. Yu, Y.C. Chen, and Y.G. Lin. Electrochimica Acta , 105 , (2013) 62.

Google Scholar

[4] D. Sharma, A. Verma, V.R. Satsangi, R. Shrivastav, and S. Dass. Hydrogen energy , 39 , (2014) 4189.

Google Scholar

[5] Z. Xi, C. Li, L. Zhang, M. Xing, and J. Zhang. Hydrogen energy , 39 , (2014) 6345.

Google Scholar

[6] C. Belabed, N. Haine, Z. Benabdelghani, B. Bellal, and M. Trari. Hydrogen energy , 39 , (2014) 17533.

DOI: 10.1016/j.ijhydene.2014.08.107

Google Scholar

[7] L. Li, L. Xu, W. Shi, and J. Guan. Hydrogen energy , 38 , (2013) 816.

Google Scholar

[8] L. Zhao, W. Dong, F. Zheng, L. Fang, and M. Shen. Electrochimica Acta , 80 , (2012) 354.

Google Scholar

[9] T. Mahalingam, J.S.P. Chitra, J.P. Chu, and P.J. Sebastian. Materials Letters , 58 , (2004) 1802.

Google Scholar

[10] L.J. Minggu, K.H. Ng, H.A. Kadir, and M.B. Kassim. Ceramics International , 40 , (2014) 16015.

Google Scholar

[11] Y.S. Jeong, H. Kim, and H.S. Lee. Alloys and Compounds , 573 , (2013) 163.

Google Scholar

[12] Z. Zang, A. Nakamura, and J. Temmyo. Materials Letters , 92 , (2013) 188.

Google Scholar

[13] S. Ishizuka, K. Suzuki, Y. Okamoto, M. Yanagita, T. Sakurai, K. Akimoto, N. Fujiwara, H. Kobayashi, K. Matsubara, and S. Niki. , Physica Status Solidi (C) , 1 , (2004) 1067.

DOI: 10.1002/pssc.200304245

Google Scholar

[14] ] M. Ivill, M. Overberg, C. Abernathy, D. Norton, A. Hebard, N. Theodoropoulou, and J. Budai. Solid-State Electron , 47 , (2003) 2215.

DOI: 10.1016/s0038-1101(03)00200-4

Google Scholar

[15] T. Maruyama. Solar Energy Mater. Solar Cells , 56 , (1998) 85.

Google Scholar

[16] A. Musa, T. Akomolafe, and M. Carter. Solar Energy Mater. Solar Cells , 51 , (1998) 305.

Google Scholar

[17] H. Yu, J. Yu, S. Liu, and S. Mann. Chem. Mater. , 19 , (2007) 4327.

Google Scholar

[18] P. Chatchai, A.Y. Nosaka, and Y. Nosaka. Electrochemitry , 79 , No. 10 (2011).

Google Scholar