Photocatalytic Degradation of Phenol by Impure BiFeO3 under Visible Light Irradiation

Article Preview

Abstract:

Impure BiFeO3 as a visible light photocatalyst for phenol degradation was synthezied via solid state method. The calcined temperatures of catalysts were studied. The characteristics of the catalysts were determined by XRD, SEM/EDS and BET. The catalysts were mainly composed of rhombohedral distorted perovskite-type BiFeO3 phase with impurity phases (B2Fe4O9, Bi25FeO40 and Bi2O3). Photocatalytic activity of phenol (5 mg/l) was studied in the impure BiFeO3 illuminated with 200 w fluorescence lamps. The catalyst amount and initial pH value of phenol solution on the photocatalytic effiency have been also investigated. In the present experiments, the catalyst calcined at 800°C shows the highest activity. The optimum loading of impure BiFeO3 and pH value were obtained to be 0.5 g/l and 6, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

274-278

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Xian, H. Yang, J.F. Dai, Z.Q. Wei, I.Y. Ma, W.J. Feng, Matter. Lett. 65(2011)1573-75.

Google Scholar

[2] Z.X. Li, Y. Shen, C. Yang, Y.C. Lei, Y.H. Guan, Y.H. Lin, D.B. Liu, C.W. Nan, J. Mater. Chem. A. 1(2013)823-29.

Google Scholar

[3] J. Deng, S. Banerjee, S.K. Mohapatra, Y.R. Smith, M. Misra, J. Fundamentals of Renewable Energy and Applications. 1(2011)1-10.

Google Scholar

[4] T. Choi, S. Lee, Y.J. Choi, V. Kiryukhin, S. -W Cheong, Science, 329(2009)63-64.

Google Scholar

[5] U.A. Joshi, J.S. Jang, P.H. Borse, J.S. Lee, Appl. Phys. Lett. 92(2008)242106.

Google Scholar

[6] M. Valant, A.K. Anelsson, N. Alford, Chem. Mater. 19(2007)5431-36.

Google Scholar

[7] S. Shetly, V.R. Palkar, R. Pinto, J. Phys. 58(2002)1027-30.

Google Scholar

[8] S. Li, Y.H. lin, B.P. Zhang, C.W. Nan, Chin. J. Inorg. Chem. 26(2010)495-99.

Google Scholar

[9] Z.L. Hou, H.F. Zhou, J. Yuan, Y.Q. Kang, H.J. Yang, H.B. Jin, M.S. Coo, Chin. Phys. Lett. 28(2011)307702.

Google Scholar

[10] Z.L. Hou, H.F. Zhou, L.B. Kong, H. Bojin, X. Qi, M.S. Cao, Mater. Lett. 84(2012)110-13.

Google Scholar

[11] Y.Q. Kang, M.S. Coo, J. Yuan, X.L. Shi, Matter. Lett. 63(2009)1344-46.

Google Scholar

[12] J. Liu, L. Fang, F.G. Zeng, S. Ju, M.R. Shen, Appl. Phys. Lett. 95(2009)022511.

Google Scholar

[13] J.K. Kim, S.S. Kim, W-J. Kim, Mater. Lett. 59(2005)4006-9.

Google Scholar

[14] C. Chen, J.R. Cheng, S.W. Yu, L.J. Che, Z.Y. Meng, J. Cryst. Growth. 291(2006)135-39.

Google Scholar

[15] Anonymous, Standard methods for the examination of water and wastewater. 19th Ed., APHA, AWWA, WPCF, Washington DC, USA, (1995).

Google Scholar

[16] R. Qiu, L. Song, Y. Mo, D. Zhang, E. Brewer, React. Kinet. Catal. Lett. 94(2008)183-89.

Google Scholar

[17] M.S. Bernardo, T. Jardiel, M. Piteado, A.C. Cabellero, M. Villegas, J. Eur. Ceram. Soc. 31(2011)3047-53.

Google Scholar

[18] L. Wang, J-B. Xu, B. Gao, A-M. Chang, J. Chen, L. Bian, C-Y. Song, Matter. Res. Bull. 48(2013)383-88.

Google Scholar

[19] Z.S. Liu, B. Wu, Y. Zhu, Matter. Chem. And Phys. 135(2012)474-78.

Google Scholar

[20] K. Vasanth Kumar, K. Porkodi, A. Selvaganapathi, Dyes and Pigments. 75(2007)246-49.

Google Scholar

[21] T. Wei, C. Wan, J. Photochem. Photobio. A: Chemistry, 69(1992)241-49.

Google Scholar

[22] C-H. Chiou, C-Y. Wu, R-S. Juang, Chemical Engineering Journal. 139(2008)322-29.

Google Scholar