Electrochemical Characteristics of the Amorphous-Nanocrystal Ni–Mo Cathodes in Sodium Hydroxide Solution

Article Preview

Abstract:

The amorphous-nanocrystal Ni-Mo deposits were obtained by electrodeposition in alkaline nickel carbonate solution. X-ray diffraction (XRD), scanning electron microscopy (SEM) and modern technologies were used to describe the content, microstructure and morphology of the deposits. The electrochemical characteristics of Ni-Mo deposits were electrolyzed in 33°C, 7 mol/L NaOH electrolytic solutions. The results showed that when I was 100 mA·cm2, the hydrogen evolution potential of Ni-Mo21.76 was lower than amorphous Ni-Mo26.36 and 250mV lower than the nanocrystal Ni cathode. And the Ni-Mo deposits with more amorphous phase content would be in lower hydrogen evolution overpotential, a higher exchange current density, and a better electrolytic stability. These due to the amorphous combined with nanocrystal, lager contact surface and binding energy of Ni-Mo structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

280-285

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sanches Luciana S., Domingues Sergio H., Marino Claudia E. B., Mascaro Lucia H: Electrochemistry Communications, Vol. 6(2004) No 6, pp.543-548.

Google Scholar

[2] Shunsuke Yagi, Akira Kawakami, Kuniaki Murase, Yasuhiro Awakura: Electrochimica Acta, Vol. 52 (2007) No19, pp.6041-6051.

DOI: 10.1016/j.electacta.2007.03.063

Google Scholar

[3] Alexis Damian, Sasha Omanovic: Power Sources, Vol. 158 (2006) No1, pp.464-476.

Google Scholar

[4] Stasov A.A., Pasechnik S. Ya., Izv. Vyssh Ucheb Zaved. Ser. Chem. And Chem: Technol., Vol. 16(1973) No4, pp.600-603.

Google Scholar

[5] Jović V.D., Jović B.M., Electroanal. Chem., Vol. 541(2003), pp.1-11.

Google Scholar

[6] Krstajić N.V., Jović V.D., Gajić-Krstajić Lj., Jović B.M., Antozzi A.L., Martelli G. N: Hydrogen Energy, Vol. 33 (2008) No. 14, pp.3676-3687.

DOI: 10.1016/j.ijhydene.2015.06.127

Google Scholar

[7] Navarro-Flores Elisa, Zhiwen Chong, Omanovic Sasha, Molecular Catalysis A: Chemical, Vol. 226 (2005) No. 2, pp.179-197.

Google Scholar

[8] Wang Y., Woodward C., Zhou S.H., Liu Z.K., Chen L. Q: Scripta Materialia, Vol. 52 (2005) No. 1, pp.17-20.

Google Scholar

[9] Byrd Adam J., Pant K.K., Gupta Ram B: Fuel, Vol. 87 (2008) No. 13-14, pp.2956-2960.

Google Scholar

[10] Guevara-Lara A., Robert Bacaud, Vrinat M: Applied Catalysis A: General, Vol. 328(2007) No. 2, pp.99-108.

DOI: 10.1016/j.apcata.2007.05.028

Google Scholar

[11] Andonova S., Vladov Ch., Pawelec B., Shtereva I. , Tyuliev G., Damyanova S., Petrov L: Applied Catalysis A: General, 328 Vol. (2007) No. 2, pp.201-209.

DOI: 10.1016/j.apcata.2007.06.009

Google Scholar

[12] Reshetnikov S.I., Ivanov E.A., Startsev A. N: Chemical Engineering Journal, Vol. 134 (2007) No. 1-3, pp.100-105.

Google Scholar

[13] Gennero de Chialvo M.R., Chialvo A.C. J: Electroanalytical Chemistry, Vol. 448 (1998) No. 1, pp.87-93.

DOI: 10.1016/s0022-0728(98)00011-4

Google Scholar

[14] Mikolaj Donten, Henrikas Cesiulis, Zbigniew Stojek: Electrochimica Acta, Vol. 50 (2005)No. 6, pp.1405-1412.

DOI: 10.1016/j.electacta.2004.08.028

Google Scholar

[15] Zhang Yi, Ma Jun, Fang Yongkui, Duan Jiguo: Trans. Nonferrous Met. Soc. China. Vol. 14 (2004) No. Z1, pp.147-151.

Google Scholar

[16] Jović B.M., Jović V.D., Maksimović V.M., Pavlović M. G: Electrochimica Acta, Vol. 53 (2008) No. 14, pp.4796-4804.

DOI: 10.1016/j.electacta.2008.02.004

Google Scholar

[17] Hu C.C., Weng C. Y: Appl. Electrochem, Vol. 30 (2000) No. 4, pp.499-506.

Google Scholar

[18] Hu W.K., Gao X.P., Dag Noréus, Trygve Burchardt, Nils K. Nakstad: Power Sources, Vol. 160 (2006) No. 1, pp.704-710.

DOI: 10.1016/j.jpowsour.2006.01.048

Google Scholar

[19] Mosio-Mosiewski Jan, Morawski Ireneusz: Applied Ctalysis A: General, Vol. 283(2005) No. 1-2, pp.147-155.

Google Scholar

[20] Liu M.Y., Yu B., Xu J.M., Chen J: Power Sources, Vol. 183 (2008) No. 2, pp.708-712.

Google Scholar

[21] Abadias G., Michel A., Tromas C., Jaouen C., Dub S. N: Surface and Coatings Technology, Vol. 202 (2007) No. 4-7, pp.844-853.

DOI: 10.1016/j.surfcoat.2007.05.068

Google Scholar

[22] Huang Jinzhao, Xu Zheng, Li Hailing, Kang Guohu, Wang Wenjing: Trans. Nonferrous Met. Soc. China, Vol. 16 (2006) No. 5, pp.1092-1096.

Google Scholar

[23] Jiao Jiao, Bu Shaoyue, Wang Guichang, Bu XianHe. J: Molecular Structure: Theochem, Vol. 862 (2008) No. 1-3, pp.80-84.

DOI: 10.1016/j.theochem.2008.04.034

Google Scholar

[24] Zhou S.H., Wang Y., Jiang C., Zhu J.Z., Chen L.Q., Liu Z. K: Materials Science and Engineering A: Vol. 397(2005) No. 1-2, pp.288-296.

Google Scholar

[25] Arnaldo C. Faro Jr., Ana Carlota B. dos Santos: Ctalysis Today, Vol. 118(2006) No. 3-4, pp.402-409.

Google Scholar

[26] Kim. J. J., Choi. Y., Surech. S., Argon A. S: Science, Vol. 295(2002) No. 5555, pp.654-657.

Google Scholar

[27] Kedzierzawski P., Oleszak D., Janik-Czachor M: Materials Science and Engineering A: Vol. 300 (2001)No. 1-2, pp.105-112.

DOI: 10.1016/s0921-5093(00)01672-5

Google Scholar

[28] Murphy S., Usov V., Shvets I. V: Surf. Sci. Vol. 601 (2007) No. 23, pp.5576-5584.

Google Scholar

[29] Goswami G.L., Kumar S., Galun R: Lasers Eng. Vol. 13(2003), pp.1-12.

Google Scholar

[30] Ireneusz Morawski, Jan Mosio-Mosiewski: Fuel Processing Technology, Vol. 87 (2006) No. 7, pp.659-669.

DOI: 10.1016/j.fuproc.2006.01.006

Google Scholar