Possibilities of Reusing Sugar Cane Straw Ash in the Production of Alternative Binders

Article Preview

Abstract:

Sugar cane production is increasing in Brazil due the demand in manufacturing sugar and alcohol. During production process, several wastes are generated, such as sugar cane straw. After a burning process of this waste material, sugar cane straw ash (SCSA) is obtained, and may be used in the production of alternative binders. The aim of this paper is to assess the possibility of reuse SCSA as supplementary cementitious material in blended Portland cement mortars and as raw material in the production of alkali-activated binders. Blended Portland cement mortars were prepared using 0%, 20% and 30% of SCSA in replacement of Portland cement. For alkali-activated mortars, the activating solution is based on sodium hydroxide (NaOH) solution and different Slag/SCSA proportions in mass were assessed: 100/0, 75/25 and 50/50. Mechanical strength of mortars cured at room temperature was tested for 7 and 28 curing days. The results confirm that enhanced mechanical properties can be obtained for both alternative binders using SCSA on its composition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

304-311

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] SNIC - Sindicato Nacional da Indústria do Cimento. Consumo Mensal de 2013. Information on http: /www. snic. org. br/numeros_dinamico. asp. (11/03/2014).

Google Scholar

[2] FICEM - Inter-American Cement Federation. Statistical Report 2013. Information on http: /www. ficem. org/estadisticas/statiscal_report_2013. pdf. (11/03/2014).

Google Scholar

[3] X. Guo, H. Shi, W.A. Dick. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cem Concr Compos. 32 (2010) 142–147.

DOI: 10.1016/j.cemconcomp.2009.11.003

Google Scholar

[4] J.H. Sharp, E.M. Gartner, D.E. Macphee. Novel cement system (sustainability). Session 2 of the Fred Glasser cement science symposium. Adv Cem Res. 22(4) (2010) 195–202.

DOI: 10.1680/adcr.2010.22.4.195

Google Scholar

[5] P. C. Hewlett. Lea's Chemistry of Cement and Concrete, fourth ed., ELSEVIER, London, (2008).

Google Scholar

[6] J. Payá, J. Monzó, M. V. Borrachero, E. Peris-Mora, L. M. Ordóñez. Studies on crystalline rice husk ashes and the activation of their pozzolanic properties. Waste Manage. 1 (2000) 493-503.

DOI: 10.1016/s0713-2743(00)80060-4

Google Scholar

[7] G. C. Cordeiro, R. D. Toledo Filho, L. M. Tavares, E. M. R. Fairbairn. Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem Concr Res. 39 (2008) 110-115.

DOI: 10.1016/j.cemconres.2008.11.005

Google Scholar

[8] G. C. Cordeiro, L. M. Toledo Filho, E. M. R. Fairbairn. Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash. Cons Build Mater. 23 (2009) 3301-3303.

DOI: 10.1016/j.conbuildmat.2009.02.013

Google Scholar

[9] V. N. Castaldelli, J. L. Akasaki, J. L. P. Melges, M. M. Tashima, L. Soriano, M. V. Borrachero, J. Monzó, J. Payá. Use of Slag/Sugar Cane Bagasse Ash [SCBA] Blends in the Production of Alkali-Activated Materials. Mater. 6 (2013) 3108-3127.

DOI: 10.3390/ma6083108

Google Scholar

[10] F. P. Torgal, J. C. Gomes, S. Jalali. Alkali-activated binders: A review Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr Build Mater. 22 (2008) 1305-1314.

DOI: 10.1016/j.conbuildmat.2007.10.015

Google Scholar

[11] M. Lizcano, H. S. Kim, S. Basu, M. Radovi. Mechanical properties of sodium and potassium activated metakaolin-based geopolymers. J Mater Sci. 47 (2012) 2607-2616.

DOI: 10.1007/s10853-011-6085-4

Google Scholar

[12] N. Ranjbar, M. Mehrali, U. J. Alengaram, H. S. C Metselaar, M. Z. Jumaat. Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Constr Build Mater. 65 (2014) 114-121.

DOI: 10.1016/j.conbuildmat.2014.04.064

Google Scholar

[13] S. Onisei, Y. Pontikes, T. van Gerven, V.N. Angelopoulos, T. Velea, V. Predica, P. Moldovan. Synthesis of inorganic polymers using fly ash and primary lead slag. J Hazard Mater. 205–206 (2012) 101–110.

DOI: 10.1016/j.jhazmat.2011.12.039

Google Scholar

[14] S.A. Bernal, E. Rodríguez, R. Mejía de Gutiérrez, M. Gordillo, J.L. Provis. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J Mater Sci. 46 (2011) 5477–5486.

DOI: 10.1007/s10853-011-5490-z

Google Scholar

[15] M. L. C. Ripoli. Utilização do material remanescente de colheita de cana-de-açúcar [Saccharun spp] – Equacionamento dos balanços energético e econômico (In portuguese). 150 pages. Habilitation Thesis – Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, (1991).

DOI: 10.11606/9786587391144

Google Scholar

[16] M. L. C. Ripoli, C. A. Gamero. Palhiço de cana-de-açúcar: ensaio padronizado de recolheimento por enfardamento cilíndrico. Energia na Agricultura (In portuguese). 22(1) (2007) 75-93.

DOI: 10.11606/d.11.2018.tde-20181127-162100

Google Scholar

[17] Associação Brasileira de Normas Técnicas. NBR 7214 – Areia para ensaio de cimento (In portuguese). 4 pages. Rio de Janeiro, (2012).

Google Scholar

[18] A. Guzmán, C. Gutiérrez, V. Amigó, R. Mejia de Gutiérrez, S. Delvasto. Pozzolanic evaluation of the sugar cane leaf. Materiales de Construcción. 61 (2011) 213-225.

DOI: 10.3989/mc.2011.54809

Google Scholar

[19] M. M. Tashima. Producción y caracterización de materiales cementantes a partir del Silicoaluminato Cálcico Vítreo (VCAS) (In spanish). 454 pages. PhD Thesis - Universitat Politècnica de València, Valencia, (2012).

DOI: 10.4995/thesis/10251/16879

Google Scholar