Quality Assessment of Machined Surfaces by an Optical Profilometer

Article Preview

Abstract:

Technological parameters affecting the surface quality of cutting edges in production system with the AWJ technology include cutting head movement speed. The article examines and evaluates the quality of processed surface by the AWJ technology on selected materials as related to the change of cutting head movement speed. It was discovered that the movement speed for the AWJ technology has a significant effect on the surface quality

You might also be interested in these eBooks

Info:

Periodical:

Pages:

443-450

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Bátora, K. Vasilko, Machined surfaces; Technological inheritance, functionality (Obrobené povrchy. Technologická dedičnosť, funkčnosť), Trenčín, 2000. (in Slovak).

Google Scholar

[2] Ľ. Bičejová, S. Fabian, Analysis of technological head working pressure, tilt angle and shift impact to its vibrations using AWJ technology, Applied Mechanics and Materials 616 (2014) 159-166.

DOI: 10.4028/www.scientific.net/amm.616.159

Google Scholar

[3] S. Fabian, Ľ. Bičejová, Technological head tilt angle influence analysis to generation of vibration during ceramics material machining by means of AWJ technology, Applied Mechanics and Materials 616 (2014) 175-182.

DOI: 10.4028/www.scientific.net/amm.616.175

Google Scholar

[4] T. Krenický, Non-contact Study of Surfaces Created Using the AWJ Technology, Manufacturing Technology 15/1 (2015) 61-64.

DOI: 10.21062/ujep/x.2015/a/1213-2489/mt/15/1/61

Google Scholar

[5] S. Hloch et al., Technological factors of high speed hydroabrasive jet and their impact on the surface of finished product – further trends of research (Technologické faktory vysokorýchlostného hydroabrazívneho prúdu a ich vplyv na povrch finálneho výrobku – ďalšie trendy výskumu), Manufacturing Engineering 1 (2007).

Google Scholar

[6] S. Hloch, Identification and analysis of influence factors in relation to the topography of surfaces made by abrasive jet cutting (Identifikácia a analýza vplyvu faktorov vo vzťahu k topografii povrchov vytvorených hydroabrazívnym delením), Habilitation Thesis, 2008. (in Slovak).

Google Scholar

[7] Ľ. Král, Assessment of surface quality of selected materials for machining by abrasive waterjet (Hodnotenie kvality povrchu vybraných materiálov pri obrábaní abrazívnym vodným lúčom), Thesis; FEVT TU, Zvolen, 2011. (in Slovak).

Google Scholar

[8] R. Kreheľ, Mathematical model of machining process with regulation of particular, Acta Technica CSAV 53/4 (2008) 355-373.

Google Scholar

[9] R. Kreheľ, Diagnosis by measuring the forces of production, in: Scientific Papers, Operation and diagnostics of machines and production systems operational states 4, RAM-Verlag, Lüdenscheid, 2011, pp.23-27.

Google Scholar

[10] I. Maňková, Progressive Technologies (Progresívne technológie), TUKE, Faculty of Mechanical Engineering, Košice, 2000. (in Slovak).

Google Scholar

[11] A. Panda, M. Prislupčák, I. Pandová, Progressive technology diagnostic and factors affecting to machinability, Applied Mechanics and Materials 616 (2014) 183-190.

DOI: 10.4028/www.scientific.net/amm.616.183

Google Scholar

[12] J. Ružbarský, J. Paško, Š. Gašpár, Techniques of Die Casting, RAM-Verlag, Lüdenscheid, (2014).

Google Scholar

[13] Ľ. Straka, S. Fabian, Modelling of selected reliability indicators of prototype PAM equipment, Applied Mechanics and Materials 460 (2014) 91-98.

DOI: 10.4028/www.scientific.net/amm.460.91

Google Scholar

[14] Ľ. Straka, I. Čorný, R. Kreheľ, Evaluation of capability of measuring device on the basis of diagnostics, Applied Mechanics and Materials 308 (2013) 69-74.

DOI: 10.4028/www.scientific.net/amm.308.69

Google Scholar

[15] S. Šoltésová, S. Hloch, Study of Stainless Steel Surface Topography Created by Abrasive, Manufacturing and industrial engineering 4 (2011) 16-18.

Google Scholar

[16] T. Krenický, Implementation of Virtual Instrumentation for Machinery Monitoring, in: Scientific Papers: Operation and Diagnostics of Machines and Production Systems Operational States: Vol. 4, RAM-Verlag, Lüdenscheid, 2011, pp.5-8.

Google Scholar

[17] J. Valíček, S. Hloch, Measurement and control of surface quality created by dividing abrasive jet (Měření a řízení kvality povrchu vytvorených hydroabazivním delením), AMOS, Ostrava, 2008. (in Czech).

Google Scholar

[18] K. Vasilko, Analytical theory of machining process (Analytická teória trieskového obrábania), FMT TUKE, Prešov, 2007. (in Slovak).

Google Scholar

[19] K. Vasilko, J. Kmec, Division of material (Delenie materiálu), Datapress, Prešov, 2003. (in Slovak).

Google Scholar

[20] P. Janda, R. Kminiak, The influence of method of clamping milling head to the quality of the surface during milling on the foursided milling machine, Acta facultatis xylologiae Zvolen 55/2 (2013) 51-58.

Google Scholar

[21] T. Krenický, Measuring system for the contactless characterization of surface geometry (Merací systém pre bezkontaktnú charakterizáciu geometrie povrchov), Strojárstvo Extra 5 (2012), 13/1-13/2. (in Slovak).

Google Scholar