Sorption Thermodynamic and Kinetic Study of Polylactic Acid Fibers with Disperse Dyes in Non-Aqueous Medium

Article Preview

Abstract:

The sorption thermodynamics and kinetics of disperse dyes on polylactic acid (PLA) fibers were investigated. PLA is crucial for a sustainable textile industry. However, the low dye exhaustion limits the textile application of PLA fibers. The basic dyeing parameters have been determined to provide an in-depth understanding of dyeing behavior. The weak sorption affinities were attributed to the weak dye-fiber interaction and favorable chemical potential of dyes in solvent. Enthalpy–entropy compensation effect also played a role in weak sorption. The interplay of dye structure and enthalpy, entropy changes was rationalized using molecular surface area and rotatable bonds. The conformation constraint strategy was proposed to overcome weak sorption affinity problem by lowering the entropy penalty. Temperature dependence of diffusion coefficients was well reproduced using molecular collision based diffusion model. The activation energies of diffusion have been correlated with molecular volumes of dyes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-132

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Sawada, K., et al., Optimization of dyeing poly(lactic acid) fibers with vat dyes. Dyes. Pigm. 2007. 74: pp.81-84.

DOI: 10.1016/j.dyepig.2006.01.015

Google Scholar

[2] Blackburn, R.S., et al., Effect of d-isomer concentration on the coloration properties of poly(lactic acid). Dyes. Pigm. 2006. 70: pp.251-258.

DOI: 10.1016/j.dyepig.2005.05.011

Google Scholar

[3] Yang, S., et al., Characterization and biodegradation behavior of bio-based poly (lactic acid) and soy protein blends for sustainable horticultural applications. Green Chem. 2015. 17: pp.380-393.

DOI: 10.1039/c4gc01482k

Google Scholar

[4] Vilela, C., et al., The quest for sustainable polyesters–insights into the future. Polym. Chem. 2014. 5: pp.3119-3141.

Google Scholar

[5] Burkinshaw, S.M., et al., The clearing of poly(lactic acid) fibres dyed with disperse dyes using ultrasound: Part 3. Dyes. Pigm. 2008. 77: pp.387-394.

DOI: 10.1016/j.dyepig.2007.06.006

Google Scholar

[6] Yang, Y., et al., Comparison of disperse dye exhaustion, color yield, and colorfastness between polylactide and poly (ethylene terephthalate). J. Appl. Polym. Sci. 2003. 90: pp.3285-3290.

DOI: 10.1002/app.13062

Google Scholar

[7] Yang, Y., et al., Dyeing conditions and their effects on mechanical properties of polylactide fabric. AATCC Rev. 2003. 3: pp.56-61.

Google Scholar

[8] Karst, D., et al., Using the solubility parameter to explain disperse dye sorption on polylactide. J. Appl. Polym. Sci. 2005. 96: pp.416-422.

DOI: 10.1002/app.21456

Google Scholar

[9] Reddy, N., et al., Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polym Degrad Stab. 2008. 93: pp.233-241.

DOI: 10.1016/j.polymdegradstab.2007.09.005

Google Scholar

[10] Karst, D., et al., Effect of Arrangement of L-Lactide and D-Lactide in Poly [(L-lactide)-co-(D-lactide)] on its Resistance to Hydrolysis Studied by Molecular Modeling. Macromol. Chem. Phys. 2008. 209: pp.168-174.

DOI: 10.1002/macp.200700283

Google Scholar

[11] Karst, D., et al., Effect of disperse dye structure on dye sorption onto PLA fiber. J. Colloid Interface Sci. 2007. 310: pp.106-111.

DOI: 10.1016/j.jcis.2007.01.037

Google Scholar

[12] Wen, H., et al., Dyeing of polylactide fibers in supercritical carbon dioxide. J. Appl. Polym. Sci. 2007. 105: p.1903-(1907).

DOI: 10.1002/app.26234

Google Scholar

[13] Rabiei, N, et al., The kinetic and thermodynamic parameters of dyeing of polypropylene/Clay composite fibers using disperse dye. Dyes. Pigm. 2012. 94 : pp.386-392.

DOI: 10.1016/j.dyepig.2012.02.010

Google Scholar

[14] Sevim, A.M., et al., An investigation of the kinetics and thermodynamics of the adsorption of a cationic cobalt porphyrazine onto sepiolite. Dyes. Pigm. 2011. 88: pp.25-38.

DOI: 10.1016/j.dyepig.2010.04.011

Google Scholar

[15] Hou, X., et al., Adsorption kinetic and thermodynamic studies of silk dyed with sodium copper chlorophyllin. Ind. Eng. Chem. Res. 2012. 51: pp.8341-8347.

DOI: 10.1021/ie300201j

Google Scholar

[16] Islam, M.T., et al., Use of N-methylformanilide as swelling agent for meta-aramid fibers dyeing: Kinetics and equilibrium adsorption of Basic Blue 41. Dyes. Pigm. 2015. 113: pp.554-561.

DOI: 10.1016/j.dyepig.2014.08.029

Google Scholar

[17] Shen, J., et al., The effect of tris(2-carboxyethyl)phosphine on the dyeing of wool fabrics with natural dyes. Dyes. Pigm. 2014. 108: pp.70-75.

DOI: 10.1016/j.dyepig.2014.04.027

Google Scholar

[18] Ujhelyiova, A., et al., Kinetics of dyeing process of blend polypropylene/polyester fibres with disperse dye. Dyes. Pigm. 2007. 72: pp.212-216.

DOI: 10.1016/j.dyepig.2005.08.026

Google Scholar

[19] Ohashi, H., et al., Physical Re-Examination of Parameters on a Molecular Collisions-Based Diffusion Model for Diffusivity Prediction in Polymers. J. Phys. Chem. B. 2011. 115: pp.15181-15187.

DOI: 10.1021/jp2068717

Google Scholar

[20] Fuller, E.N., et al., New method for prediction of binary gas-phase diffusion coefficients. Ind. Eng. Chem. 1966. 58: pp.18-27.

DOI: 10.1021/ie50677a007

Google Scholar

[21] Williams, M.L., et al., The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 1955. 77: pp.3701-3707.

DOI: 10.1021/ja01619a008

Google Scholar

[22] Dorgan, J.R., et al., Melt rheology of variable L-content poly (lactic acid). J. Rheol. 2005. 49: pp.607-619.

DOI: 10.1122/1.1896957

Google Scholar

[23] Tsuzuki, S., et al., Magnitude and directionality of the interaction energy of the aliphatic CH/π interaction: significant difference from hydrogen bond. J. Phys. Chem. A. 2006. 110: pp.10163-10168.

DOI: 10.1021/jp064206j

Google Scholar

[24] Sinnokrot, M.O., et al., High-accuracy quantum mechanical studies of π-π interactions in benzene dimers. J Phys Chem A. 2006. 110 : pp.10656-10668.

DOI: 10.1021/jp0610416

Google Scholar

[25] Murakami, K., Thermodynamic and kinetic aspects of self-association of dyes in aqueous solution. Dyes. Pigm. 2002. 53: pp.31-43.

DOI: 10.1016/s0143-7208(01)00104-8

Google Scholar

[26] Dunitz, J.D., Win some, lose some: enthalpy-entropy compensation in weak intermolecular interactions. Chem Biol (Oxford, U K). 1995. 2: pp.709-712.

DOI: 10.1016/1074-5521(95)90097-7

Google Scholar

[27] Freed, K.F., Entropy-Enthalpy Compensation in Chemical Reactions and Adsorption: An Exactly Solvable Model. J. Phys. Chem. B. 2011. 115: pp.1689-1692.

DOI: 10.1021/jp1105696

Google Scholar

[28] Chodera, J.D., et al., Entropy-enthalpy compensation: Role and ramifications in biomolecular ligand recognition and design. Biophysics. 2013. 42: pp.121-142.

DOI: 10.1146/annurev-biophys-083012-130318

Google Scholar

[29] Das, R., et al., Tuning excited-state proton transfer dynamics of a 3-hydroxychromone dye in supramolecular complexes via host–guest steric compatibility. Phys. Chem. Chem. Phys. 2014. 16: pp.776-784.

DOI: 10.1039/c3cp52597j

Google Scholar

[30] Smith, W.W., et al., Macrocyclic inhibitors of penicillopepsin. 3. Design, synthesis, and evaluation of an inhibitor bridged between P2 and P1'. J. Am. Chem. Soc. 1998. 120: pp.4622-4628.

DOI: 10.1021/ja973713z

Google Scholar

[31] Meyer, F.M., et al., Biaryl-bridged macrocyclic peptides: Conformational constraint via carbogenic fusion of natural amino acid side chains. J. Org. Chem. 2012. 77: pp.3099-3114.

DOI: 10.1021/jo202105v

Google Scholar

[32] Chang, S., et al. Design, synthesis, and biological evaluation of novel conformationally constrained inhibitors targeting epidermal growth factor receptor threonine790→methionine790 mutant. J. Med. Chem. 2012. 55: pp.2711-2723.

DOI: 10.1021/jm201591k

Google Scholar

[33] Vrentas, J.S., et al., Diffusion in polymer-solvent systems. I. Reexamination of the free-volume theory. J Polym Sci, Polym. Phys. Ed. 1977. 15: pp.403-416.

DOI: 10.1002/pol.1977.180150302

Google Scholar

[34] Ohashi, H., et al., Prediction of Self-Diffusivity in Multicomponent Polymeric Systems Using Shell-Like Free Volume Theory. Ind. Eng. Chem. Res. 2010. 49: pp.11676-11681.

DOI: 10.1021/ie101299q

Google Scholar

[35] Ohashi, H., et al., General Diffusion Model for Polymeric Systems Based on Microscopic Molecular Collisions and Random Walk Movement. Ind. Eng. Chem. Res. 2013. 52: pp.9940-9945.

DOI: 10.1021/ie401045m

Google Scholar

[36] Welle, F., A new method for the prediction of diffusion coefficients in poly (ethylene terephthalate). J. Appl. Polym. Sci. 2013. 129: pp.1845-1851.

DOI: 10.1002/app.38885

Google Scholar