[1]
Adewuyi, Y.G., Sonochemistry in environmental remediation. 2. Heterogeneous sonophotocatalytic oxidation processes for the treatment of pollutants in water. Environmental Science & Technology, 2005. 39(22): pp.8557-8570.
DOI: 10.1021/es0509127
Google Scholar
[2]
Yamamoto, T., et al., Destruction of polychlorinated naphthalenes by a high-temperature melting treatment (GeoMelt process). Environmental Science and Pollution Research, 2014. 21(12): pp.7557-7566.
DOI: 10.1007/s11356-014-2643-z
Google Scholar
[3]
Mustafa, N., et al., Anaerobic digestion of municipal wastewater sludges using anaerobic fluidized bed bioreactor. Bioresource Technology, 2014. 172: pp.461-466.
DOI: 10.1016/j.biortech.2014.09.081
Google Scholar
[4]
Tezel, U., et al., Transition of municipal sludge anaerobic digestion from mesophilic to thermophilic and long-term performance evaluation. Bioresource Technology, 2014. 170: pp.385-394.
DOI: 10.1016/j.biortech.2014.08.007
Google Scholar
[5]
Fullana, A., et al., Formation and destruction of chlorinated pollutants during sewage sludge incineration. Environmental Science & Technology, 2004. 38(10): pp.2953-2958.
DOI: 10.1021/es034896u
Google Scholar
[6]
Liu, R., et al., Monodisperse CuO Hard and Hollow Nanospheres as Visible-Light Photocatalysts. European Journal of Inorganic Chemistry, 2013. (8): pp.1358-1362.
DOI: 10.1002/ejic.201200975
Google Scholar
[7]
Hoffmann, M.R., et al., Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews, 1995. 95(1): pp.69-96.
Google Scholar
[8]
Kanakaraju, D., et al., Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environmental Chemistry Letters, 2014. 12(1): pp.27-47.
DOI: 10.1007/s10311-013-0428-0
Google Scholar
[9]
Kumar, S.G., et al., Zinc oxide based photocatalysis: tailoring surface-bulk structure and related interfacial charge carrier dynamics for better environmental applications. Rsc Advances, 2015. 5(5): pp.3306-3351.
DOI: 10.1039/c4ra13299h
Google Scholar
[10]
Wang, M., et al., P-n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy & Environmental Science, 2013. 6(4): pp.1211-1220.
DOI: 10.1039/c3ee24162a
Google Scholar
[11]
Wang, H., et al., The photocatalytic activity and degradation mechanism of methylene blue over copper(II) tetra(4-carboxyphenyl) porphyrin sensitized TiO2 under visible light irradiation. Rsc Advances, 2014. 4(55): pp.28978-28986.
DOI: 10.1039/c4ra03979c
Google Scholar
[12]
Moulder, J.F., et al., Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identication and Interpretation of XPS Data. Perkin-Elmer Corporation: (1995).
Google Scholar