Experimental Modeling of Bacterially-Induced Ca Carbonate Precipitation: New Insights on Possible Mechanisms

Article Preview

Abstract:

The contribution of microorganisms, particularly bacteria, in carbonate mineral formation, the main natural processes controlling CO2 level in the atmosphere, has played an important role since the Archean Eon. In this study we review our recent experimental work on CaCO3 precipitation induced by two anoxygenic phototrophic bacteria (APB), Rhodovulum steppense A-20sT and Rhodovulum sp. S-17-65, and by cyanobacteria Gloeocapsa sp. f-6gl. These bacteria are representatives of two important groups of photosynthetic organisms present at the Earth surface both in the past and at the present times. The mechanisms of organomineralization deriving from APB and cyanobacteria activities are drastically different and relate to the main physical and chemical processes controlling CaCO3 precipitation from aqueous solution, essentially local supersaturation with respect to carbonates induced by photosynthesis outside the living cells and Ca adsorption onto cell surface and the associated extracellular polymeric substances (EPS).The APB can physiologically control their surface potential to electrostatically attract nutrients at alkaline pH, while rejecting Ca ions to prevent Ca adsorption and subsequent CaCO3 precipitation in the vicinity of cell surface and thus, cell incrustation. In contrast to other previously-investigated calcifying bacteria, no cellular protection mechanism against Ca2+ adsorption and subsequent carbonate precipitation has been evidenced for cyanobacteria Gloeocapsa sp. f-6gl. This is most likely linked to the peculiar cellular organization of this species that involves several cells clustered in one single capsule. In this regard, colony-forming, EPS-rich, capsular cyanobacteria may be among the most efficient calcifying microorganisms all along the Earth history and can be of interest for various technological applications involving carbonation.

You might also be interested in these eBooks

Info:

[1] O.S. Pokrovsky, R.E. Martinez, S.V. Golubev, E.I. Kompantseva, L.S. Shirokova, Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface speciation approach, Applied Geochemistry 23 (2008) 2574-2588.

DOI: 10.1016/j.apgeochem.2008.05.007

Google Scholar

[2] I.A. Bundeleva, L.S. Shirokova, P. Bénézeth, O.S. Pokrovsky, E.I. Kompantseva, S. Balor, Zeta-potential of anoxygenic phototrophic bacteria and Ca adsorption at the cell surface: implications for cell protection from CaCO3 precipitation in alkaline solutions, Journal of Colloid and Interface Science 360 (2011).

DOI: 10.1016/j.jcis.2011.04.033

Google Scholar

[3] I.A. Bundeleva, L.S. Shirokova, P. Bénézeth, O.S. Pokrovsky, E.I. Kompantseva, S. Balor, Calcium carbonate precipitation by anoxygenic phototrophic bacteria, Chemical Geology 291 (2012) 116-131.

DOI: 10.1016/j.chemgeo.2011.10.003

Google Scholar

[4] I.A. Bundeleva, L.S. Shirokova, O.S. Pokrovsky, P. Bénézeth, B. Ménez, E. Gérard, S. Balor, Calcium carbonate precipitation by cyanobacteria Gloeocapsa sp., Chemical Geology 374 (2014) 44-60.

DOI: 10.1016/j.chemgeo.2014.03.007

Google Scholar

[5] M. Dittrich, P. Kurz, B. Wehrli, The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake, Geomicrobiology Journal 21 (2004) 45-53.

DOI: 10.1080/01490450490253455

Google Scholar

[6] S Douglas, T.J. Beveridge, Mineral formation by bacteria in natural microbial communities, FEMS Microbiology Ecology 26 (1998) 79–88.

DOI: 10.1111/j.1574-6941.1998.tb00494.x

Google Scholar

[7] N. Mozes, P.G. Rouxhet, Microbial hydrophobicity and fermentation technology. In: Doyle, R.J., Rosenberg, M. (Eds. ), Microbial Cell Surface Hydrophobicity. American Society for Microbiology, 1990, Washington, DC, USA, pp.75-105.

Google Scholar

[8] C. Paulo, M. Dittrich, 2D Raman spectroscopy study of dolomite and cyanobacterial extracellular polymeric substances from Khor Al-Adaid sabkha (Qatar), Journal of Raman Spectroscopy (2013) 1563–1569.

DOI: 10.1002/jrs.4368

Google Scholar

[9] O. Braissant, G. Cailleau, C. Dupraz, E.P. Verrecchia, Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids, Journal of Sea Research 73 (2003) 485-490.

DOI: 10.1306/111302730485

Google Scholar

[10] M. Dittrich, S. Sibler, Calcium carbonate precipitation by cyanobacterial polysaccharides, Geological Society, London, Special Publications 336 (2010) 51-63.

DOI: 10.1144/sp336.4

Google Scholar

[11] A. Liang, C. Paulo, Y. Zhu, M. Dittrich, CaCO3 biomineralization on cyanobacterial surfaces: Insights from experiments with three Synechococcus strains, Colloids and Surfaces B: Biointerfaces 111 (2013) 600–608.

DOI: 10.1016/j.colsurfb.2013.07.012

Google Scholar

[12] M. Obst, J.J. Dynes, J.R. Lawrence, G.D.W. Swerhone, K. Benzerara, C. Karundakaran, K. Kaznatcheev, T. Tyliszcak, A.P. Hitchcock, Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process, Geochimica et Cosmochimica Acta 73 (2009).

DOI: 10.1016/j.gca.2009.04.013

Google Scholar

[13] M. Obst, B. Wehrli, M. Dittrich, CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism, Geobiology 7 (2009) 324–347.

DOI: 10.1111/j.1472-4669.2009.00200.x

Google Scholar

[14] C. Vasconcelos, M. Dittrich, J.A. McKenzie, Evidence of microbiocoenosis in the formation of laminae in modern stromatolites, Facies 60 (2013) 3–13.

DOI: 10.1007/s10347-013-0371-3

Google Scholar

[15] C. Dupraz, P.T. Visscher, Microbial lithification in marine stromatolites and hypersaline mats, Trends in Microbiology 13 (2005) 429-438.

DOI: 10.1016/j.tim.2005.07.008

Google Scholar

[16] M.M. Tice, D.R. Lowe, Hydrogen-based carbon fixation in the earliest known photosynthetic organisms, Geology 34 (2006) 37-40.

DOI: 10.1130/g22012.1

Google Scholar

[17] J.W. Schopf, Fossil evidence of Archean life. Philosophical Transactions of the Royal Society, B 361 (2006) 869-885.

Google Scholar

[18] C. Dupraz, R.P. Reid, O. Braissant, A.W. Decho, R.S. Norman, P.Y. Visscher, Processes of carbonate precipitation in modern microbial mats, Earth-Science Reviews 96 (2009) 141-162.

DOI: 10.1016/j.earscirev.2008.10.005

Google Scholar

[19] P.T. Visscher, J.F. Stolz, Microbial mats as bioreactors: populations, processes and products, Palaeogeography, Palaeoclimatology, Palaeoecology 219 (2005) 87-100.

DOI: 10.1016/j.palaeo.2004.10.016

Google Scholar

[20] T. Bosak, S.E. Greene, D.K. Newman, A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites, Geobiology 5 (2007) 119-126.

DOI: 10.1111/j.1472-4669.2007.00104.x

Google Scholar

[21] J.M. Olson, R.E. Blankenship, Thinking about the evolution of photosynthesis, Photosynthesis Research 80 (2004) 373-386.

DOI: 10.1023/b:pres.0000030457.06495.83

Google Scholar

[22] J.B. Ries, Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification, Biogeosciences 7 (2010) 2795-2849.

DOI: 10.5194/bg-7-2795-2010

Google Scholar

[23] M.U.E. Merz, W.R. Schlue, H. Zankl, The biology of carbonate precipitation by cyanobacteria, Facies 26 (1992) 81-102.

Google Scholar

[24] D. Papineau, J.J. Walker, S.J. Mojzsis, N.R. Pace, Composition and structure of microbial communities from stromatolites of Hamelin pool in Shark Bay, Western Australia, Applied and Environmental Microbiology 71 (2005) 4822-4832.

DOI: 10.1128/aem.71.8.4822-4832.2005

Google Scholar

[25] G.A. Zavarzin, V.K. Orleansky, L.M. Gerasimenko., S.N. Pushko, Laboratory models of cyano-microbial mats of alkaline geochemical barrier, Microbiology 72 (2003) 93-98 (in Russian).

Google Scholar

[26] J.B. Thompson, F.G. Ferris, Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water, Geology 18 (1990) 995–998.

DOI: 10.1130/0091-7613(1990)018<0995:cpogca>2.3.co;2

Google Scholar

[27] A.M. Hartley, W.A. House, M.E. Callow, B.S.C. Leadbeate, The role of green algae in the precipitation of calcite and the coprecipitation of phosphate in freshwater, Internationale Revue der gesamten Hydrobiologie und Hydrographie 80 (1995).

DOI: 10.1002/iroh.19950800302

Google Scholar

[28] S. Douglas, T.J. Beveridge, Mineral formation by bacteria in natural microbial communities, FEMS Microbiology Ecology 26 (1998) 79-88.

DOI: 10.1111/j.1574-6941.1998.tb00494.x

Google Scholar

[29] M. Obst, M. Dittrich, Calcium adsorption and changes of the surface microtopography of cyanobacteria studied by AFM, CFM, and TEM with respect to biogenic calcite nucleation, Geochemistry Geophysics Geosystems 7 (2006) 15.

DOI: 10.1029/2005gc001172

Google Scholar

[30] M. Dittrich, S. Sibler, Calcium carbonate precipitation by cyanobacterial polysaccharides, Geological Society, London, Special Publications 336 (2010) 51-63.

DOI: 10.1144/sp336.4

Google Scholar

[31] S.A. Kranz, D. Wolf-Gladrow, G. Nehrke, G. Langer, B. Rost, Calcium carbonate precipitation induced by the growth of the marine cyanobacterium Trichodesmium. Limnology and Oceanography 55 (2010) 2563-2569.

DOI: 10.4319/lo.2010.55.6.2563

Google Scholar

[32] R.E. Martinez, E. Gardés, O.S. Pokrovsky, J. Schott, E.H. Oelkers, Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surfaces? Geochimica et Cosmochimica Acta 74 (2010) 1329-1337.

DOI: 10.1016/j.gca.2009.11.025

Google Scholar

[33] V.M. Vasconcelos, K. Sivonen, W.L.R. Evans, W.W. Carmichael, M. Namikoshi, Isolation and characterization of microcystins (heptapeptide hepatotoxins) from Portuguese strains of Microcystis aeruginosa Kutz Emend Elekin. Archiv für Hydrobiologie 134 (1995).

DOI: 10.1127/archiv-hydrobiol/134/1995/295

Google Scholar

[34] R. Warthmann, Y. Van Lith, C. Vasconcelos, J.A. McKenzie, A.M. Karpoff, Bacterially induced dolomite precipitation in anoxic culture experiments, Geology 28 (2000) 1091-1094.

DOI: 10.1130/0091-7613(2000)028<1091:bidpia>2.3.co;2

Google Scholar

[35] Y. Van Lith, C. Vasconcelos, R. Warthmann, J.A. McKenzie, Microbial fossilization in carbonate sediments; a result of the bacterial surface involvement in carbonate precipitation, Sedimentology 50 (2003) 237–245.

DOI: 10.1046/j.1365-3091.2003.00550.x

Google Scholar

[36] T.R.R. Bontognali, C. Vasconcelos, R.J. Warthmann, C. Dupraz, S.M. Bernasconi, J.A. McKenzie, Microbes produce nanobacteria-like structures, avoiding cell entombment, Geology 36 (2008) 663-666.

DOI: 10.1130/g24755a.1

Google Scholar

[37] P.A. Kenward, R.H. Goldstein, L.A. Gonzalez, J.A. Roberts, Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea, Geobiology 7 (2009) 556–565.

DOI: 10.1111/j.1472-4669.2009.00210.x

Google Scholar

[38] F. G. Ferris, V. Phoenix, Y. Fujita, R.W. Smith, Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater, Geochimica et Cosmochimica Acta 68 (2004) 1701-1710.

DOI: 10.1016/s0016-7037(03)00503-9

Google Scholar

[39] A.C. Mitchell, F.G. Ferris, The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence, Geochimica et Cosmochimica Acta 69 (2005) 4199-4210.

DOI: 10.1016/j.gca.2005.03.014

Google Scholar

[40] M. Sánchez-Román, C.S. Romanek, D.C. Fernández-Remolar, A. Sánchez-Navas, J.A. McKenzie, R.A. Pibernat, C. Vasconcelos, Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments, Chemical Geology 281 (2011) 143-150.

DOI: 10.1016/j.chemgeo.2010.11.020

Google Scholar

[41] B. Lian, Q. Hu, J. Chen, J. Ji, H.H. Teng, Carbonate biomineralization induced by soil bacterium Bacillus megaterium, Geochimica et Cosmochimica Acta 70 (2006) 5522-5535.

DOI: 10.1016/j.gca.2006.08.044

Google Scholar

[42] G. Aloisi, A. Gloter, M. Kruger, K. Wallmann, F. Guyot, P. Zuddas, Nucleation of calcium carbonate on bacterial nanoglobules, Geology 34 (2006) 1017-1020.

DOI: 10.1130/g22986a.1

Google Scholar

[43] Imhoff J.F., Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship, R., Madigan, M. T, Bauer, C.E. (Eds), Anoxygenic Photosynthetic Bacteria, Springer, 2004, The Netherlands, pp.1-15.

DOI: 10.1007/0-306-47954-0_1

Google Scholar

[44] V.M. Gorlenko, E.I. Kompantseva, S.A. Korotkov, N.N. Pouchkova, A.S. Savvichev, Development conditions and species of phototrophic bacteria, inhabiting salty shallow reservoirs in Crimea, Izvestiya AN SSSR Seriya Biologia 3 (1984).

Google Scholar

[45] E.I. Kompantseva, A.V. Komova, N.A. Kostrikina, Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline soda lakes of Central Asia, International Journal of Systematic and Evolutionary Microbiology 60 (2010).

DOI: 10.1099/ijs.0.014639-0

Google Scholar

[46] E.I. Kompantseva, A.V. Komova, V.I. Krauzova, T.V. Kolganova, A.N. Panteleeva, Purple nonsulfur bacteria in weakly and moderately mineralized soda lakes of the Southern Transbaikal region and Northeastern Mongolia, Microbiology 78 (2009) 246-253.

DOI: 10.1134/s0026261709020179

Google Scholar

[47] E.I. Kompantseva, Rhodobacter euryhalinus sp. nov., a new halophilic purple bacterial species, Mikrobiologiya 54 (1985) 974-982.

Google Scholar

[48] C. Jansson, T. Northen, Calcifying cyanobacteria – the potential of biomineralization for carbon capture and storage, Current Opinion in Biotechnology 21 (2010) 365-371.

DOI: 10.1016/j.copbio.2010.03.017

Google Scholar

[49] O.A. Koksharova, Application of molecular genetic and microbiological techniques in ecology and biotechnology of cyanobacteria, Microbiology 79 (2010) 734-747.

DOI: 10.1134/s0026261710060020

Google Scholar

[50] A. J Smith, The Biology of Cyanobacteria, In: Carr, N. G. & Whitton, B. A. (eds), University of California Press, Berkeley (1982) 47-85.

Google Scholar

[51] B.D. Lee, W.A. Appel, M.R. Walton, Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations, Final Project Report, INL/EXT-06-01351, Idaho National Laboratory (2006).

DOI: 10.2172/911640

Google Scholar

[52] H. Beraldi-Campesi, S.R. S Cevallos-Ferriz, E. Chacón-Baca, Microfossil algae associated with Cretaceous stromatolites in the Tarahumara Formation, Sonora, Mexico, Cretaceous Research 25 (2004) 249-265.

DOI: 10.1016/j.cretres.2003.12.002

Google Scholar

[53] M.T. Madigan, J.M. Martinko, J. Parker, Brock Biology of Microorganisms 9th edition. Prentice Hall. Upper Saddle River, NJ, 2000, 991 pp.

Google Scholar

[54] S. Stocks-Fischer, J.K. Galinat, S.S. Bang, Microbiological precipitation of CaCO3, Soil Biology and Biochemistry 31 (1999) 1563-1571.

DOI: 10.1016/s0038-0717(99)00082-6

Google Scholar