[1]
O.S. Pokrovsky, R.E. Martinez, S.V. Golubev, E.I. Kompantseva, L.S. Shirokova, Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface speciation approach, Applied Geochemistry 23 (2008) 2574-2588.
DOI: 10.1016/j.apgeochem.2008.05.007
Google Scholar
[2]
I.A. Bundeleva, L.S. Shirokova, P. Bénézeth, O.S. Pokrovsky, E.I. Kompantseva, S. Balor, Zeta-potential of anoxygenic phototrophic bacteria and Ca adsorption at the cell surface: implications for cell protection from CaCO3 precipitation in alkaline solutions, Journal of Colloid and Interface Science 360 (2011).
DOI: 10.1016/j.jcis.2011.04.033
Google Scholar
[3]
I.A. Bundeleva, L.S. Shirokova, P. Bénézeth, O.S. Pokrovsky, E.I. Kompantseva, S. Balor, Calcium carbonate precipitation by anoxygenic phototrophic bacteria, Chemical Geology 291 (2012) 116-131.
DOI: 10.1016/j.chemgeo.2011.10.003
Google Scholar
[4]
I.A. Bundeleva, L.S. Shirokova, O.S. Pokrovsky, P. Bénézeth, B. Ménez, E. Gérard, S. Balor, Calcium carbonate precipitation by cyanobacteria Gloeocapsa sp., Chemical Geology 374 (2014) 44-60.
DOI: 10.1016/j.chemgeo.2014.03.007
Google Scholar
[5]
M. Dittrich, P. Kurz, B. Wehrli, The role of autotrophic picocyanobacteria in calcite precipitation in an oligotrophic lake, Geomicrobiology Journal 21 (2004) 45-53.
DOI: 10.1080/01490450490253455
Google Scholar
[6]
S Douglas, T.J. Beveridge, Mineral formation by bacteria in natural microbial communities, FEMS Microbiology Ecology 26 (1998) 79–88.
DOI: 10.1111/j.1574-6941.1998.tb00494.x
Google Scholar
[7]
N. Mozes, P.G. Rouxhet, Microbial hydrophobicity and fermentation technology. In: Doyle, R.J., Rosenberg, M. (Eds. ), Microbial Cell Surface Hydrophobicity. American Society for Microbiology, 1990, Washington, DC, USA, pp.75-105.
Google Scholar
[8]
C. Paulo, M. Dittrich, 2D Raman spectroscopy study of dolomite and cyanobacterial extracellular polymeric substances from Khor Al-Adaid sabkha (Qatar), Journal of Raman Spectroscopy (2013) 1563–1569.
DOI: 10.1002/jrs.4368
Google Scholar
[9]
O. Braissant, G. Cailleau, C. Dupraz, E.P. Verrecchia, Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids, Journal of Sea Research 73 (2003) 485-490.
DOI: 10.1306/111302730485
Google Scholar
[10]
M. Dittrich, S. Sibler, Calcium carbonate precipitation by cyanobacterial polysaccharides, Geological Society, London, Special Publications 336 (2010) 51-63.
DOI: 10.1144/sp336.4
Google Scholar
[11]
A. Liang, C. Paulo, Y. Zhu, M. Dittrich, CaCO3 biomineralization on cyanobacterial surfaces: Insights from experiments with three Synechococcus strains, Colloids and Surfaces B: Biointerfaces 111 (2013) 600–608.
DOI: 10.1016/j.colsurfb.2013.07.012
Google Scholar
[12]
M. Obst, J.J. Dynes, J.R. Lawrence, G.D.W. Swerhone, K. Benzerara, C. Karundakaran, K. Kaznatcheev, T. Tyliszcak, A.P. Hitchcock, Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process, Geochimica et Cosmochimica Acta 73 (2009).
DOI: 10.1016/j.gca.2009.04.013
Google Scholar
[13]
M. Obst, B. Wehrli, M. Dittrich, CaCO3 nucleation by cyanobacteria: laboratory evidence for a passive, surface-induced mechanism, Geobiology 7 (2009) 324–347.
DOI: 10.1111/j.1472-4669.2009.00200.x
Google Scholar
[14]
C. Vasconcelos, M. Dittrich, J.A. McKenzie, Evidence of microbiocoenosis in the formation of laminae in modern stromatolites, Facies 60 (2013) 3–13.
DOI: 10.1007/s10347-013-0371-3
Google Scholar
[15]
C. Dupraz, P.T. Visscher, Microbial lithification in marine stromatolites and hypersaline mats, Trends in Microbiology 13 (2005) 429-438.
DOI: 10.1016/j.tim.2005.07.008
Google Scholar
[16]
M.M. Tice, D.R. Lowe, Hydrogen-based carbon fixation in the earliest known photosynthetic organisms, Geology 34 (2006) 37-40.
DOI: 10.1130/g22012.1
Google Scholar
[17]
J.W. Schopf, Fossil evidence of Archean life. Philosophical Transactions of the Royal Society, B 361 (2006) 869-885.
Google Scholar
[18]
C. Dupraz, R.P. Reid, O. Braissant, A.W. Decho, R.S. Norman, P.Y. Visscher, Processes of carbonate precipitation in modern microbial mats, Earth-Science Reviews 96 (2009) 141-162.
DOI: 10.1016/j.earscirev.2008.10.005
Google Scholar
[19]
P.T. Visscher, J.F. Stolz, Microbial mats as bioreactors: populations, processes and products, Palaeogeography, Palaeoclimatology, Palaeoecology 219 (2005) 87-100.
DOI: 10.1016/j.palaeo.2004.10.016
Google Scholar
[20]
T. Bosak, S.E. Greene, D.K. Newman, A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites, Geobiology 5 (2007) 119-126.
DOI: 10.1111/j.1472-4669.2007.00104.x
Google Scholar
[21]
J.M. Olson, R.E. Blankenship, Thinking about the evolution of photosynthesis, Photosynthesis Research 80 (2004) 373-386.
DOI: 10.1023/b:pres.0000030457.06495.83
Google Scholar
[22]
J.B. Ries, Review: geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification, Biogeosciences 7 (2010) 2795-2849.
DOI: 10.5194/bg-7-2795-2010
Google Scholar
[23]
M.U.E. Merz, W.R. Schlue, H. Zankl, The biology of carbonate precipitation by cyanobacteria, Facies 26 (1992) 81-102.
Google Scholar
[24]
D. Papineau, J.J. Walker, S.J. Mojzsis, N.R. Pace, Composition and structure of microbial communities from stromatolites of Hamelin pool in Shark Bay, Western Australia, Applied and Environmental Microbiology 71 (2005) 4822-4832.
DOI: 10.1128/aem.71.8.4822-4832.2005
Google Scholar
[25]
G.A. Zavarzin, V.K. Orleansky, L.M. Gerasimenko., S.N. Pushko, Laboratory models of cyano-microbial mats of alkaline geochemical barrier, Microbiology 72 (2003) 93-98 (in Russian).
Google Scholar
[26]
J.B. Thompson, F.G. Ferris, Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water, Geology 18 (1990) 995–998.
DOI: 10.1130/0091-7613(1990)018<0995:cpogca>2.3.co;2
Google Scholar
[27]
A.M. Hartley, W.A. House, M.E. Callow, B.S.C. Leadbeate, The role of green algae in the precipitation of calcite and the coprecipitation of phosphate in freshwater, Internationale Revue der gesamten Hydrobiologie und Hydrographie 80 (1995).
DOI: 10.1002/iroh.19950800302
Google Scholar
[28]
S. Douglas, T.J. Beveridge, Mineral formation by bacteria in natural microbial communities, FEMS Microbiology Ecology 26 (1998) 79-88.
DOI: 10.1111/j.1574-6941.1998.tb00494.x
Google Scholar
[29]
M. Obst, M. Dittrich, Calcium adsorption and changes of the surface microtopography of cyanobacteria studied by AFM, CFM, and TEM with respect to biogenic calcite nucleation, Geochemistry Geophysics Geosystems 7 (2006) 15.
DOI: 10.1029/2005gc001172
Google Scholar
[30]
M. Dittrich, S. Sibler, Calcium carbonate precipitation by cyanobacterial polysaccharides, Geological Society, London, Special Publications 336 (2010) 51-63.
DOI: 10.1144/sp336.4
Google Scholar
[31]
S.A. Kranz, D. Wolf-Gladrow, G. Nehrke, G. Langer, B. Rost, Calcium carbonate precipitation induced by the growth of the marine cyanobacterium Trichodesmium. Limnology and Oceanography 55 (2010) 2563-2569.
DOI: 10.4319/lo.2010.55.6.2563
Google Scholar
[32]
R.E. Martinez, E. Gardés, O.S. Pokrovsky, J. Schott, E.H. Oelkers, Do photosynthetic bacteria have a protective mechanism against carbonate precipitation at their surfaces? Geochimica et Cosmochimica Acta 74 (2010) 1329-1337.
DOI: 10.1016/j.gca.2009.11.025
Google Scholar
[33]
V.M. Vasconcelos, K. Sivonen, W.L.R. Evans, W.W. Carmichael, M. Namikoshi, Isolation and characterization of microcystins (heptapeptide hepatotoxins) from Portuguese strains of Microcystis aeruginosa Kutz Emend Elekin. Archiv für Hydrobiologie 134 (1995).
DOI: 10.1127/archiv-hydrobiol/134/1995/295
Google Scholar
[34]
R. Warthmann, Y. Van Lith, C. Vasconcelos, J.A. McKenzie, A.M. Karpoff, Bacterially induced dolomite precipitation in anoxic culture experiments, Geology 28 (2000) 1091-1094.
DOI: 10.1130/0091-7613(2000)028<1091:bidpia>2.3.co;2
Google Scholar
[35]
Y. Van Lith, C. Vasconcelos, R. Warthmann, J.A. McKenzie, Microbial fossilization in carbonate sediments; a result of the bacterial surface involvement in carbonate precipitation, Sedimentology 50 (2003) 237–245.
DOI: 10.1046/j.1365-3091.2003.00550.x
Google Scholar
[36]
T.R.R. Bontognali, C. Vasconcelos, R.J. Warthmann, C. Dupraz, S.M. Bernasconi, J.A. McKenzie, Microbes produce nanobacteria-like structures, avoiding cell entombment, Geology 36 (2008) 663-666.
DOI: 10.1130/g24755a.1
Google Scholar
[37]
P.A. Kenward, R.H. Goldstein, L.A. Gonzalez, J.A. Roberts, Precipitation of low-temperature dolomite from an anaerobic microbial consortium: the role of methanogenic Archaea, Geobiology 7 (2009) 556–565.
DOI: 10.1111/j.1472-4669.2009.00210.x
Google Scholar
[38]
F. G. Ferris, V. Phoenix, Y. Fujita, R.W. Smith, Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater, Geochimica et Cosmochimica Acta 68 (2004) 1701-1710.
DOI: 10.1016/s0016-7037(03)00503-9
Google Scholar
[39]
A.C. Mitchell, F.G. Ferris, The coprecipitation of Sr into calcite precipitates induced by bacterial ureolysis in artificial groundwater: Temperature and kinetic dependence, Geochimica et Cosmochimica Acta 69 (2005) 4199-4210.
DOI: 10.1016/j.gca.2005.03.014
Google Scholar
[40]
M. Sánchez-Román, C.S. Romanek, D.C. Fernández-Remolar, A. Sánchez-Navas, J.A. McKenzie, R.A. Pibernat, C. Vasconcelos, Aerobic biomineralization of Mg-rich carbonates: Implications for natural environments, Chemical Geology 281 (2011) 143-150.
DOI: 10.1016/j.chemgeo.2010.11.020
Google Scholar
[41]
B. Lian, Q. Hu, J. Chen, J. Ji, H.H. Teng, Carbonate biomineralization induced by soil bacterium Bacillus megaterium, Geochimica et Cosmochimica Acta 70 (2006) 5522-5535.
DOI: 10.1016/j.gca.2006.08.044
Google Scholar
[42]
G. Aloisi, A. Gloter, M. Kruger, K. Wallmann, F. Guyot, P. Zuddas, Nucleation of calcium carbonate on bacterial nanoglobules, Geology 34 (2006) 1017-1020.
DOI: 10.1130/g22986a.1
Google Scholar
[43]
Imhoff J.F., Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship, R., Madigan, M. T, Bauer, C.E. (Eds), Anoxygenic Photosynthetic Bacteria, Springer, 2004, The Netherlands, pp.1-15.
DOI: 10.1007/0-306-47954-0_1
Google Scholar
[44]
V.M. Gorlenko, E.I. Kompantseva, S.A. Korotkov, N.N. Pouchkova, A.S. Savvichev, Development conditions and species of phototrophic bacteria, inhabiting salty shallow reservoirs in Crimea, Izvestiya AN SSSR Seriya Biologia 3 (1984).
Google Scholar
[45]
E.I. Kompantseva, A.V. Komova, N.A. Kostrikina, Rhodovulum steppense sp. nov., an obligately haloalkaliphilic purple nonsulfur bacterium widespread in saline soda lakes of Central Asia, International Journal of Systematic and Evolutionary Microbiology 60 (2010).
DOI: 10.1099/ijs.0.014639-0
Google Scholar
[46]
E.I. Kompantseva, A.V. Komova, V.I. Krauzova, T.V. Kolganova, A.N. Panteleeva, Purple nonsulfur bacteria in weakly and moderately mineralized soda lakes of the Southern Transbaikal region and Northeastern Mongolia, Microbiology 78 (2009) 246-253.
DOI: 10.1134/s0026261709020179
Google Scholar
[47]
E.I. Kompantseva, Rhodobacter euryhalinus sp. nov., a new halophilic purple bacterial species, Mikrobiologiya 54 (1985) 974-982.
Google Scholar
[48]
C. Jansson, T. Northen, Calcifying cyanobacteria – the potential of biomineralization for carbon capture and storage, Current Opinion in Biotechnology 21 (2010) 365-371.
DOI: 10.1016/j.copbio.2010.03.017
Google Scholar
[49]
O.A. Koksharova, Application of molecular genetic and microbiological techniques in ecology and biotechnology of cyanobacteria, Microbiology 79 (2010) 734-747.
DOI: 10.1134/s0026261710060020
Google Scholar
[50]
A. J Smith, The Biology of Cyanobacteria, In: Carr, N. G. & Whitton, B. A. (eds), University of California Press, Berkeley (1982) 47-85.
Google Scholar
[51]
B.D. Lee, W.A. Appel, M.R. Walton, Whitings as a Potential Mechanism for Controlling Atmospheric Carbon Dioxide Concentrations, Final Project Report, INL/EXT-06-01351, Idaho National Laboratory (2006).
DOI: 10.2172/911640
Google Scholar
[52]
H. Beraldi-Campesi, S.R. S Cevallos-Ferriz, E. Chacón-Baca, Microfossil algae associated with Cretaceous stromatolites in the Tarahumara Formation, Sonora, Mexico, Cretaceous Research 25 (2004) 249-265.
DOI: 10.1016/j.cretres.2003.12.002
Google Scholar
[53]
M.T. Madigan, J.M. Martinko, J. Parker, Brock Biology of Microorganisms 9th edition. Prentice Hall. Upper Saddle River, NJ, 2000, 991 pp.
Google Scholar
[54]
S. Stocks-Fischer, J.K. Galinat, S.S. Bang, Microbiological precipitation of CaCO3, Soil Biology and Biochemistry 31 (1999) 1563-1571.
DOI: 10.1016/s0038-0717(99)00082-6
Google Scholar