Performances of Artificial Lightweight Geopolymer Aggregate (ALGA) in OPC Concrete

Article Preview

Abstract:

The non-availability of natural lightweight aggregate and demand are increasing in worldwide, thus new alternatives on producing artificial aggregate should be developed. This paper discussed on the mechanical properties of artificial lightweight geopolymer aggregate (ALGA) made from LUSI mud and alkaline activator in concrete. LUSI means Sidoarjo mud from Indonesia which erupted on 2006 with high volume and impacted an area of almost 770 hectare. The alkaline activator used was combination of sodium hydroxide and sodium silicate. The geopolymer paste formed need to be pelleted and sintered at 950 °C. The results showed that the compressive strength of OPC-ALGA concrete is 41.89 MPa at 28 days of testing with a density of 1760.1 kg/m3 which can be classified as lightweight concrete. The water absorption of ALGA concrete is 2.77%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-35

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chandra, S. & Berntsson, L. Lightweight Aggregate Concrete Technology and Application. Noyes Publication, New York (2002).

Google Scholar

[2] Priyadharshini, P., Mohan Ganesh, G., Santhi, A.S. Inter. J. Earth Sci. Eng. Vol. 5(3) (2012), p.540.

Google Scholar

[3] Tommy, Y. Lo., Cui, H.Z., Tang, W.C., Leung, W.M. Constr. Build. Mater., Vol. 22 (2008), p.623.

Google Scholar

[4] Tommy, Y. Lo., Tang, W.C., Cui, H.Z. Build. Environment, Vol. 42 (2007), p.3025.

Google Scholar

[5] Bernhardt, M., Tellesbo, H., Justnes, H., Wiik, K.J. European Ceram. Society, Vol. 33 (2013), p.2731.

Google Scholar

[6] Geetha, S., Ramamurthy, K. Waste Management, Vol. 30 (2010), p.1528.

Google Scholar

[7] Geetha, S., Ramamurthy, K. Constr. Build. Mater., Vol. 25 (2011), p. (2002).

Google Scholar

[8] Geetha, S., Ramamurthy, K. Cem. Concr. Composites, Vol. 43 (2013), p.20.

Google Scholar

[9] Ramamurthy, K., Harikrishnan, K.I. Cem. Concr. Composites, Vol. 28 (2006), p.33.

Google Scholar

[10] Byung-wan, J., Seung-kook, P., Jong-bin, P. Cem. Concr. Composites, Vol. 29 (2007), p.128.

Google Scholar

[11] Niyazi, U.K., Turan, O. Constr. Build. Mater., Vol. 25 (2011), p.1430.

Google Scholar

[12] Sivakumar, A., Gomathi, P. J. Civil Eng. Constr. Techn., Vol. 3(2) (2012), p.42.

Google Scholar

[13] Almir, S., Francis Rodrigues de, S., Wilson Nunes dos, S., Alexsandro, M.Z., Fernando do, C.R.A. Constr. Build. Mater., Vol. 24 (2010), p.2446.

Google Scholar

[14] Rafiza, A.R., Mohd Mustafa, A. A, Kamarudin, H., Khairul Nizar, I., Djwantoro, H., Zarina, Y. Inter. J. Molecular Sci. Vol. 16 (2015), p.11629.

Google Scholar

[15] ASTM C 330. Standard Specification for Lightweight Aggregates for Structural Concrete (2005).

Google Scholar

[16] Rafiza, A.R., Mustafa Al Bakri, A.M., Kamarudin, H., Hardjito, D., Khairul Nizar, I. Appl. Mechanics Mater. Vols. 754-755 (2015), p.279.

Google Scholar

[17] ASTM C140 - 01 American Society for Testing and Material. Standard Test Method for Sampling and Testing Concrete Masonry Units and Related Units. USA (2000).

DOI: 10.1520/c0140_c0140m-14

Google Scholar

[18] BS EN 13055-1 British Standard. Lightweight Aggregate – Part 1: Lightweight aggregates for concrete, mortar and grout (2002).

DOI: 10.3403/02834718

Google Scholar

[19] ASTM C143. Standard Test Method for Slump of Hydraulic-Cement Concrete. ASTM International, West Conshohocken, PA, USA (2012).

Google Scholar

[20] BS EN 12390-3 British Standard. Testing hardened concrete – Part 3: Compressive strength of testing specimens. Brussels (2009).

Google Scholar

[21] Eun Oh, J., Moon, J., Mancio, M., Clark, S.M., & Monteiro, P.J.M. Cem. Concr. Res. Vol. 41 (2011), p.107.

Google Scholar

[22] Verdolotti, L., Iannace, S., Lavorgna, M., & Lamanna, R. (2008). J. Mater. Sci. Vol. 43 (2008), p.865.

Google Scholar

[23] Nazari, A., Riahi, S., Riahi, S.H., Fatemeh, S. S, Khademno, A. J. American Sci. Vol. 6(5) (2010), p.6.

Google Scholar

[24] Erhan, G., Mehmet, G., Ozgur, P., Kasim, M. Composites: Part B, Vol. 53 (2013), p.258.

Google Scholar

[25] Ducman, V., Mirtic, B. Constr. Build. Mater., Vol. 68 (2014), p.314.

Google Scholar