Comparative Investigations of some Properties of Lightweight Cement Concretes Containing Siliceous Fly Ash

Article Preview

Abstract:

In the article the possibility of lightweight cement concrete manufacturing has been presented with use of binder in which part of cement was replaced with siliceous fly ash Class F. It was used lightweight aggregate Pollytag and Keramzyt. Total amount of binder was 400 kg/m3 with w/b=0.5. Mechanical properties has been tested as well as properties affecting durability of concrete. Replacing part of cement with fly ash improved concrete resistance on chloride ion migration, reduced compressive and tensile strength of concrete and increased carbonation depth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-74

Citation:

Online since:

January 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. M. Malhotra. High-performance high-volume fly ash concrete. Concrete International, 24(7), (2002).

Google Scholar

[2] P. K. Mehta. High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the international workshop on sustainable development and concrete technology, pages 3-14, (2004).

Google Scholar

[3] M.A. Glinicki. Tendencje rozwojowe technologii betonu. Przeglad Budowlany, 78: 24-30, (2007).

Google Scholar

[4] L. Czarnecki and W. Kurdowski. Tendencje kształtujace przyszłość betonu. Budownictwo, Technologie, Architektura, nr 1: 50-55, (2007).

Google Scholar

[5] A. Bentur, A. Katz, and S. Mindess. Przyszłość betonu. Wizja i wyzwania. Cement Wapno Beton, 11: 102-121, (2006).

Google Scholar

[6] A. Ajdukiewicz. Aspekty trwałości i wpływu na środowisko w projektowaniu konstrukcji betonowych. Przegląd Budowlany, 82: 20-29, (2011).

Google Scholar

[7] P. Nath and P. Sarker. Effect of fly ash on the durability properties of high strength concrete. Procedia Engineering, 14: 1149-1156, (2011).

DOI: 10.1016/j.proeng.2011.07.144

Google Scholar

[8] M.J. McCarthy and R.K. Dhir. Development of high volume fly ash cements for use in concrete construction. Fuel, 84(11): 1423-1432, (2005).

DOI: 10.1016/j.fuel.2004.08.029

Google Scholar

[9] D. Jóźwiak-Niedźwiedzka. Effect of fluidized bed combustion fly ash on the chloride resistance and scaling resistance of concrete. Concrete in Aggressive Aqueous Environments, Performance, Testing and Modeling, pages 2-5, (2009).

Google Scholar

[10] P. Chindaprasirt, C. Chotithanorm, H.T. Cao, and V. Sirivivatnanon. Influence of fly ash fineness on the chloride penetration of concrete. C. and Building Materials, 21(2): 356-361, (2007).

DOI: 10.1016/j.conbuildmat.2005.08.010

Google Scholar

[11] S. Chandra and L. Berntsson. Lightweight aggregate concrete. Elsevier, (2002).

Google Scholar

[12] Su-Chen Huang, Fang-Chih Chang, Shang-Lien Lo, Ming-Yu Lee, Chu-Fang Wang, and JyhDong Lin. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of hazardous materials, 144(1): 52-58, (2007).

DOI: 10.1016/j.jhazmat.2006.09.094

Google Scholar

[13] A. Mueller, S.N. Sokolova, and V.I. Vereshagin. Characteristics of lightweight aggregates from primary and recycled raw materials. Construction and Building Materials, 22(4): 703-712, (2008).

DOI: 10.1016/j.conbuildmat.2007.06.009

Google Scholar

[14] Chao-Lung Hwang, Le Anh-Tuan Bui, Kae-Long Lin, and Chun-Ting Lo. Manufacture and performance of lightweight aggregate from municipal solid waste incinerator fly ash and reservoir sediment for self-consolidating lightweight concrete. Cement and Concrete Composites, 34(10): 1159-1166, (2012).

DOI: 10.1016/j.cemconcomp.2012.07.004

Google Scholar

[15] M. Franus, L. Bandura, and W W. Franus. Modification of the lightweight aggregate with the use of spent zeolite sorbents after the sorption of diesel fuel. Вісник Національного університету, 1(781): 32-41, (2014).

DOI: 10.35784/bud-arch.1881

Google Scholar

[16] B. G. Corrochano, J. A. Azcárate, and M. R. Gonzalez. Heavy metal chemical fractionation and immobilization in lightweight aggregates produced from mining and industrial waste. International Journal of Environmental Science & Technology, 8(4): 667-676, (2011).

DOI: 10.1007/bf03326251

Google Scholar

[17] Y. Gao, L. Cheng, Z. Gao, and S. Guo. Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete. Construction and Building Materials, 43: 506-510, (2013).

DOI: 10.1016/j.conbuildmat.2013.02.038

Google Scholar

[18] C.D. Atiş. Accelerated carbonation and testing of concrete made with fly ash. Construction and Building Materials, 17(3): 147-152, (2003).

DOI: 10.1016/s0950-0618(02)00116-2

Google Scholar

[19] K. Turk, M. Karatas, and T. Gonen. Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of scc. KSCE Journal of Civil Engineering, 17(1): 202-209, (2013).

DOI: 10.1007/s12205-013-1680-3

Google Scholar

[20] M. Fernandez Bertos, S.J.R. Simons, C.D. Hills, and P.J. Carey. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials, 112(3): 193-205, (2004).

DOI: 10.1016/j.jhazmat.2004.04.019

Google Scholar

[21] T. Gonen and S. Yazicioglu. The influence of compaction pores on sorptivity and carbonation of concrete. Construction and Building Materials, 21(5): 1040-1045, (2007).

DOI: 10.1016/j.conbuildmat.2006.02.010

Google Scholar

[22] W. Kubissa and R. Jaskulski. Measuring and time variability of the sorptivity of concrete. Procedia Engineering, 57: 634-641, 2013. Modern Building Materials, Structures and Techniques.

DOI: 10.1016/j.proeng.2013.04.080

Google Scholar

[23] N. Bozkurt and S. Yazicioglu. Strength and capillary water absorption of lightweight concrete under different curing conditions. Indian Journal of Engineering and Material Sciences, 17: 145- 151, (2010).

Google Scholar

[24] S. Serkan. The effects of using fly ash on high strength lightweight concrete produced with expanded clay aggregate. Scientific Research and Essays, 4(4): 275-288, (2009).

Google Scholar

[25] Y. Bai, R. Ibrahim, and P.A.M. Basheer. Properties of lightweight concrete manufactured with fly ash, furnace bottom ash, and lytag. In Proceedings, pages 77-88, (2004).

Google Scholar

[26] Q. F. Wasan. Using the fly ash to reduce the steel corrosion in lightweight concrete. Journal of Univesity of Thi-Qar, 8(3): 165-177, (2013).

Google Scholar

[27] S. Kou, C. Poon, and F. Agrela. Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites, 33(8): 788-795, (2011).

DOI: 10.1016/j.cemconcomp.2011.05.009

Google Scholar

[28] B.D. Ikotun and S. Ekolu. Strength and durability effect of modified zeolite additive on concrete properties. Construction and Building Materials, 24(5): 749-757, (2010).

DOI: 10.1016/j.conbuildmat.2009.10.033

Google Scholar

[29] P.A.M. Basheer. Permeation analysis. Handbook of analytical techniques in concrete science and technology, pages 658-737, (2001).

DOI: 10.1016/b978-081551437-4.50019-9

Google Scholar

[30] U. Mucteba and A. Veysel. Durability performance of concrete incorporating Class F and Class C fly ashes. Construction and Building Materials, 34(0): 170-178, (2012).

DOI: 10.1016/j.conbuildmat.2012.02.075

Google Scholar

[31] D.F. Aponte, M. Barra, and E. Vàzquez. Durability and cementing efficiency of fly ash in concretes. Construction and Building Materials, 30: 537-546, (2012).

DOI: 10.1016/j.conbuildmat.2011.12.026

Google Scholar

[32] A.R. Boğa and İ.B. Topçu. Influence of fly ash on corrosion resistance and chloride ion permeability of concrete. Construction and Building Materials, 31: 258-264, (2012).

DOI: 10.1016/j.conbuildmat.2011.12.106

Google Scholar