[1]
V. M. Malhotra. High-performance high-volume fly ash concrete. Concrete International, 24(7), (2002).
Google Scholar
[2]
P. K. Mehta. High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the international workshop on sustainable development and concrete technology, pages 3-14, (2004).
Google Scholar
[3]
M.A. Glinicki. Tendencje rozwojowe technologii betonu. Przeglad Budowlany, 78: 24-30, (2007).
Google Scholar
[4]
L. Czarnecki and W. Kurdowski. Tendencje kształtujace przyszłość betonu. Budownictwo, Technologie, Architektura, nr 1: 50-55, (2007).
Google Scholar
[5]
A. Bentur, A. Katz, and S. Mindess. Przyszłość betonu. Wizja i wyzwania. Cement Wapno Beton, 11: 102-121, (2006).
Google Scholar
[6]
A. Ajdukiewicz. Aspekty trwałości i wpływu na środowisko w projektowaniu konstrukcji betonowych. Przegląd Budowlany, 82: 20-29, (2011).
Google Scholar
[7]
P. Nath and P. Sarker. Effect of fly ash on the durability properties of high strength concrete. Procedia Engineering, 14: 1149-1156, (2011).
DOI: 10.1016/j.proeng.2011.07.144
Google Scholar
[8]
M.J. McCarthy and R.K. Dhir. Development of high volume fly ash cements for use in concrete construction. Fuel, 84(11): 1423-1432, (2005).
DOI: 10.1016/j.fuel.2004.08.029
Google Scholar
[9]
D. Jóźwiak-Niedźwiedzka. Effect of fluidized bed combustion fly ash on the chloride resistance and scaling resistance of concrete. Concrete in Aggressive Aqueous Environments, Performance, Testing and Modeling, pages 2-5, (2009).
Google Scholar
[10]
P. Chindaprasirt, C. Chotithanorm, H.T. Cao, and V. Sirivivatnanon. Influence of fly ash fineness on the chloride penetration of concrete. C. and Building Materials, 21(2): 356-361, (2007).
DOI: 10.1016/j.conbuildmat.2005.08.010
Google Scholar
[11]
S. Chandra and L. Berntsson. Lightweight aggregate concrete. Elsevier, (2002).
Google Scholar
[12]
Su-Chen Huang, Fang-Chih Chang, Shang-Lien Lo, Ming-Yu Lee, Chu-Fang Wang, and JyhDong Lin. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of hazardous materials, 144(1): 52-58, (2007).
DOI: 10.1016/j.jhazmat.2006.09.094
Google Scholar
[13]
A. Mueller, S.N. Sokolova, and V.I. Vereshagin. Characteristics of lightweight aggregates from primary and recycled raw materials. Construction and Building Materials, 22(4): 703-712, (2008).
DOI: 10.1016/j.conbuildmat.2007.06.009
Google Scholar
[14]
Chao-Lung Hwang, Le Anh-Tuan Bui, Kae-Long Lin, and Chun-Ting Lo. Manufacture and performance of lightweight aggregate from municipal solid waste incinerator fly ash and reservoir sediment for self-consolidating lightweight concrete. Cement and Concrete Composites, 34(10): 1159-1166, (2012).
DOI: 10.1016/j.cemconcomp.2012.07.004
Google Scholar
[15]
M. Franus, L. Bandura, and W W. Franus. Modification of the lightweight aggregate with the use of spent zeolite sorbents after the sorption of diesel fuel. Вісник Національного університету, 1(781): 32-41, (2014).
DOI: 10.35784/bud-arch.1881
Google Scholar
[16]
B. G. Corrochano, J. A. Azcárate, and M. R. Gonzalez. Heavy metal chemical fractionation and immobilization in lightweight aggregates produced from mining and industrial waste. International Journal of Environmental Science & Technology, 8(4): 667-676, (2011).
DOI: 10.1007/bf03326251
Google Scholar
[17]
Y. Gao, L. Cheng, Z. Gao, and S. Guo. Effects of different mineral admixtures on carbonation resistance of lightweight aggregate concrete. Construction and Building Materials, 43: 506-510, (2013).
DOI: 10.1016/j.conbuildmat.2013.02.038
Google Scholar
[18]
C.D. Atiş. Accelerated carbonation and testing of concrete made with fly ash. Construction and Building Materials, 17(3): 147-152, (2003).
DOI: 10.1016/s0950-0618(02)00116-2
Google Scholar
[19]
K. Turk, M. Karatas, and T. Gonen. Effect of fly ash and silica fume on compressive strength, sorptivity and carbonation of scc. KSCE Journal of Civil Engineering, 17(1): 202-209, (2013).
DOI: 10.1007/s12205-013-1680-3
Google Scholar
[20]
M. Fernandez Bertos, S.J.R. Simons, C.D. Hills, and P.J. Carey. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. Journal of Hazardous Materials, 112(3): 193-205, (2004).
DOI: 10.1016/j.jhazmat.2004.04.019
Google Scholar
[21]
T. Gonen and S. Yazicioglu. The influence of compaction pores on sorptivity and carbonation of concrete. Construction and Building Materials, 21(5): 1040-1045, (2007).
DOI: 10.1016/j.conbuildmat.2006.02.010
Google Scholar
[22]
W. Kubissa and R. Jaskulski. Measuring and time variability of the sorptivity of concrete. Procedia Engineering, 57: 634-641, 2013. Modern Building Materials, Structures and Techniques.
DOI: 10.1016/j.proeng.2013.04.080
Google Scholar
[23]
N. Bozkurt and S. Yazicioglu. Strength and capillary water absorption of lightweight concrete under different curing conditions. Indian Journal of Engineering and Material Sciences, 17: 145- 151, (2010).
Google Scholar
[24]
S. Serkan. The effects of using fly ash on high strength lightweight concrete produced with expanded clay aggregate. Scientific Research and Essays, 4(4): 275-288, (2009).
Google Scholar
[25]
Y. Bai, R. Ibrahim, and P.A.M. Basheer. Properties of lightweight concrete manufactured with fly ash, furnace bottom ash, and lytag. In Proceedings, pages 77-88, (2004).
Google Scholar
[26]
Q. F. Wasan. Using the fly ash to reduce the steel corrosion in lightweight concrete. Journal of Univesity of Thi-Qar, 8(3): 165-177, (2013).
Google Scholar
[27]
S. Kou, C. Poon, and F. Agrela. Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cement and Concrete Composites, 33(8): 788-795, (2011).
DOI: 10.1016/j.cemconcomp.2011.05.009
Google Scholar
[28]
B.D. Ikotun and S. Ekolu. Strength and durability effect of modified zeolite additive on concrete properties. Construction and Building Materials, 24(5): 749-757, (2010).
DOI: 10.1016/j.conbuildmat.2009.10.033
Google Scholar
[29]
P.A.M. Basheer. Permeation analysis. Handbook of analytical techniques in concrete science and technology, pages 658-737, (2001).
DOI: 10.1016/b978-081551437-4.50019-9
Google Scholar
[30]
U. Mucteba and A. Veysel. Durability performance of concrete incorporating Class F and Class C fly ashes. Construction and Building Materials, 34(0): 170-178, (2012).
DOI: 10.1016/j.conbuildmat.2012.02.075
Google Scholar
[31]
D.F. Aponte, M. Barra, and E. Vàzquez. Durability and cementing efficiency of fly ash in concretes. Construction and Building Materials, 30: 537-546, (2012).
DOI: 10.1016/j.conbuildmat.2011.12.026
Google Scholar
[32]
A.R. Boğa and İ.B. Topçu. Influence of fly ash on corrosion resistance and chloride ion permeability of concrete. Construction and Building Materials, 31: 258-264, (2012).
DOI: 10.1016/j.conbuildmat.2011.12.106
Google Scholar