Solution Concentration Affected Wavy Fibers Fabrication via Auxiliary Electrodes in Near-Field Electrospinning

Article Preview

Abstract:

Wavy fibers, fabricated via electrospinning, have been designed into many applications, such as the sensors, resonators, electromechanical systems, stretchable electronics products, flexible displays. In order to control the wavy fiber morphology, auxiliary electrodes (A-E) have been designed to control the wavy fibers deposition in near-field electrospinning (NFES), and the alternate current supplied to A-E could control fibrous amplitude and the generated frequency of the wavy fibers well. Here continue to study the wavy fiber deposited morphology via A-E in NFES in this paper, the results show that, there are still many factors would affect the fibrous amplitude, and this paper is aimed at find out the regular of the wavy fiber deposition via the A-E, which are meaningful to control wavy fiber morphology well.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-26

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Valizadeh, A.; Farkhani, S. M. Electrospinning and electrospun nanofibres. Nanobiotechnology, IET, 8(2014), 83-92.

DOI: 10.1049/iet-nbt.2012.0040

Google Scholar

[2] Sun, B.; Long, Y.; Zhang, H.; Li, M.; Duvail, J.; Jiang, X.; Yin, H. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Progress in Polymer Science, 39(2014), 862-890.

DOI: 10.1016/j.progpolymsci.2013.06.002

Google Scholar

[3] Garg, K.; Bowlin, G. L. Electrospinning jets and nanofibrous structures. Biomicrofluidics, 5(2011).

DOI: 10.1063/1.3567097

Google Scholar

[4] Wendorff, J. H.; Agarwal, S.; Greiner, A. Electrospinning: materials, processing, and applications. (2012).

Google Scholar

[5] Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(2000), 4531-4547.

DOI: 10.1063/1.373532

Google Scholar

[6] Han, T.; Reneker, D. H.; Yarin, A. L. Buckling of jets in electrospinning. Polymer, 48(2007), 6064-6076.

DOI: 10.1016/j.polymer.2007.08.002

Google Scholar

[7] Han, T.; Reneker, D. H.; Yarin, A. L. Pendulum-like motion of straight electrified jets. Polymer, 49(2008), 2160-2169.

DOI: 10.1016/j.polymer.2008.01.048

Google Scholar

[8] Xin, Y.; Reneker, D. H. Hierarchical polystyrene patterns produced by electrospinning. Polymer, 53(2012), 4254-4261.

DOI: 10.1016/j.polymer.2012.06.048

Google Scholar

[9] Sun, B.; Long, Y. Z.; Liu, S. L.; Huang, Y. Y.; Ma, J.; Zhang, H. D.; Shen, G. Z.; Xu, S. Fabrication of curled conducting polymer microfibrous arrays via a novel electrospinning method for stretchable strain sensors. Nanoscale, 5(2013).

DOI: 10.1039/c3nr01832f

Google Scholar

[10] Duan, Y. Q.; Huang, Y. A.; Yin, Z. P.; Bu, N. B.; Dong, W. T. Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. Nanoscale, 6(2014), 3289-3295.

DOI: 10.1039/c3nr06007a

Google Scholar

[11] Sun, D.; Chang, C.; Li, S.; Lin, L. Near-field electrospinning. Nano letters, 6(2006), 839-842.

DOI: 10.1021/nl0602701

Google Scholar

[12] Zheng, G.; Li, W.; Wang, X.; Wang, H.; Sun, D.; Lin, L. Experiment and simulation of coiled nanofiber deposition behavior from near-field electrospinning. Nano/Micro Engineered and Molecular Systems (NEMS), 2010 5th IEEE International Conference on. IEEE.

DOI: 10.1109/nems.2010.5592216

Google Scholar

[13] Duan, Y. Q.; Huang, Y. A.; Yin, Z. P. Transfer printing and patterning of stretchable electrospun film. Thin Solid Films, 544(2013), 152-156.

DOI: 10.1016/j.tsf.2013.03.132

Google Scholar

[14] Wang, Y. Review of long period fiber gratings written by CO2 laser. Journal of Applied Physics, 108(2010), 081101.

DOI: 10.1063/1.3493111

Google Scholar

[15] Zhu, Z. M.; Chen, X. D.; Zheng, J. W.; Liang, F.; Li, M. H.; Wang, H., FABRICATE WAVY MICRO/NANO FIBER VIA AUXILIARY ELECTRODES. Proceedings of the 1st International Conference on Progress in Additive Manufacturing, ed. C.C. Kai, et al. 2014, Singapore: Research Publishing Services. 352-357.

DOI: 10.3850/978-981-09-0446-3_063

Google Scholar