Influence of the Preparation Process on the Electrochemical Properties of xLiFePO4·yLi3V2(PO4)3/C Nano-Sized Composite Cathode Materials

Article Preview

Abstract:

In this paper, a series of xLiFePO4·yLi3V2(PO4)3/C (x/y = 1:0, 7:1, 5:1, 3:1, 1:1, 1:3 and 0:1, ratio in mol) nano-sized composite cathode materials were successfully prepared via the solid reaction method. Influence of x/y ratio, calcination temperatures and the content of citric acid on the composition, microstructure and electrochemical properties of the materials were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrochemical measurements, et al. results showed that the xLFP·yLVP/C (x and y ≠ 0) composites were composed of olivine LiFePO4 and monoclinic Li3V2(PO4)3, both of which featured slight structural distortions as the formation of V-doped LFP/C and Fe-doped LVP/C, respectively; With the increase of calcination temperatures, the crystallinity and particles size of the 7LFP·LVP/C composites increased, when calcined at 700°C, the initial charge/discharge specific capacity of the composites reached a maximum value of 145.6 mAh/g, and the voltage drop values between charge/discharge platform possessed the minimum value(0.04 V), suggesting the minimum polarization of the composites in charge/discharge process. Content of citric acid did not affect the compositions of the composites, with the increase of the molar ratio of citric acid to V3+, the discharge specific capacities of 7LFP·LVP/C increased first and then decreased, when it equaled to 1.0:1.0, the discharge specific capacity of the relative composites was 119.18 mAh/g, with a capacity retention rate of 93.9 % after 50 cycles, owning the excellent electrochemical stability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

238-243

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Theil, M. Fleischhammer, P. Axmann, et al., Experimental investigations on the electrochemical and thermal behaviour of LiCoPO4-based cathode, J. Power Sources. 222 (2013) 72–78.

DOI: 10.1016/j.jpowsour.2012.08.069

Google Scholar

[2] A. K. Rai, T. V. Thi, J. Gim, S. Kim, J. Kim, Li3V2(PO4)3/ graphene nanocomposite as a high performance cathode material for lithium ion battery, Ceram. Int. 41 (2015) 389–396.

DOI: 10.1016/j.ceramint.2014.08.082

Google Scholar

[3] J. L. Li, J. H. Wu, Y. Wang, G. B. Liu, C. Chen, H. Liu, Synthesis of LiFePO4/C composite with high rate capability using spheniscidite as a facile precursor, Mater. Lett. 136 (2014) 282–285.

DOI: 10.1016/j.matlet.2014.08.099

Google Scholar

[4] J. Yoon, S. Muhammad, D. Jang, et al. Study on structure and electrochemical properties of carbon-coated monoclinic Li3V2(PO4)3 using synchrotron based in situ X-ray diffraction and absorption, J. Alloys Compd. 569 (2013) 76–81.

DOI: 10.1016/j.jallcom.2013.03.188

Google Scholar

[5] B. Pei, Z.Q. Jiang, W.X. Zhang, et al., Nanostructured Li3V2(PO4)3 cathode supported on reduced graphene oxide for lithium-ion batteries, J. Power Sources, 239 (2013) 475–482.

DOI: 10.1016/j.jpowsour.2013.03.171

Google Scholar

[6] J.H. Yao, S.S. Wei, P.J. Zhang, et al., Synthesis and properties of Li3V2-xCex(PO4)3/C cathode materials for Li-ion batteries. J. Alloys Compd. 532 (2012) 49–54.

DOI: 10.1016/j.jallcom.2012.04.014

Google Scholar

[7] S.X. Liu, H.B. Yin, H.B. Wang, et al., Synthesis, characterization and electrochemical performances of MoO2 and carbon co-coated LiFePO4 cathode materials, Ceram. Int. 40 (2014) 3325–3331.

DOI: 10.1016/j.ceramint.2013.09.102

Google Scholar

[8] F.Q. Cheng, W. Wan, Z. Tan, et al., High power performance of nano-LiFePO4/C cathode material synthesized via lauric acid-assisted solid-state reaction, Electrochim. Acta. 56 (2011) 2999–3005.

DOI: 10.1016/j.electacta.2011.01.007

Google Scholar

[9] Y.N. Ko, J.H. Kim, Y.J. Hong, Y.C. Kang, Electrochemical properties of nano-sized Li3V2(PO4)3/C composite powders prepared by spray pyrolysis from spray solution with chelating agent, Mater. Chem. Phys. 131 (2011) 292–296.

DOI: 10.1016/j.matchemphys.2011.09.044

Google Scholar

[10] C. Gao, H. Liu, G. B. Liu, et al., High-rate performance of xLiFePO4·yLi3V2(PO4)3/C composite cathode materials obtained via polyol process, Mater. Sci. Eng., B. 178 (2013) 272–276.

DOI: 10.1016/j.mseb.2012.11.016

Google Scholar

[11] J. Xiang, J. Tu, L. Zhang, et al., Improved electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite prepared by a simple solid-state method, J. Power Sources. 195 (2010) 8331–8335.

DOI: 10.1016/j.jpowsour.2010.06.070

Google Scholar

[12] L. Wang, Synthesis and Study on Electrochemical Properties of xLiFePO4×yLi3V2(PO4)3/C Cathode Materials, Hunan University China(Master degree), 2014, 05.

Google Scholar

[13] P. Z. Gao, L. Wang, D.Y. Li, et al., Electrochemical performance of LiFePO4@C composites with biomorphic porous carbon loading and nano-core-shell Structure, Ceram. Int. 40 (2014) 13009–13017.

DOI: 10.1016/j.ceramint.2014.04.164

Google Scholar

[14] S.K. Zhong, L. Wu, J. Q. Liu. Sol–gel synthesis and electrochemical properties of 9LiFePO4·Li3V2(PO4)3/C composite cathode material for lithium ion batteries, Electrochim. Acta. 74 (2012) 8– 15.

DOI: 10.1016/j.electacta.2012.03.181

Google Scholar

[15] C. S. Dai, F. P. Wang, J. T. Liu, D. L Wang, X. G. Hu, Li3V2(PO4)3 of Synthesis by Sol-gel Method and Properties, Chinese. J. Inorg. Chem. 24(3)(2008)381-387.

Google Scholar

[16] S. Y. Chung, J. T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes, Nat. Mater. 1(2)(2002)123–128.

DOI: 10.1038/nmat732

Google Scholar

[17] P. Z. Gao, B. Yan, L. Wang, W. Liu, W. W. Gong, X. P. Liu, Influence of calcined temperatures on the microstructure and electrochemical properties of LiFePO4/C nano-particles with a core-shell structure and It's thermal stability study, J. Ceram Process. Res. 16 (1)(2015).

Google Scholar

[18] J. F. Zhang, C. Shen, B. Zhang, et al., Synthesis and performances of 2LiFePO4·Li3V2(PO4)3/C cathode materials via spray drying method with double carbon sources, J. Power Sources. 267 (2014) 227–234.

DOI: 10.1016/j.jpowsour.2014.04.153

Google Scholar

[19] F. Yu, S. H. Lim, Y. D. Zhen, Y. X. An, J. Y. Lin. Optimized electrochemical performance of three- dimensional porous LiFePO4/C microspheres via microwave irradiation assisted synthesis. J. Power Sources. 271 (2014) 223-230.

DOI: 10.1016/j.jpowsour.2014.08.009

Google Scholar

[20] B. F. Wang, Y. L. Qiu, L. Yang. Structural and electrochemical characterization of LiFePO4 synthesized by an HEDP-based soft-chemistry route, Electrochem. Commun. 8 (2006) 1801–1805.

DOI: 10.1016/j.elecom.2006.07.034

Google Scholar

[21] Y. M. Bai. Influence on the Performance of Lithium Iron Phosphate of Carbon Source and Metal Ions Doping. Hunan University China(Doctor degree), 2011, 05.

Google Scholar