[1]
C. He, B. Osbaeck, E. Makovicky, Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects, Cement and Concrete Research, 25 (1995) 1691-1702.
DOI: 10.1016/0008-8846(95)00165-4
Google Scholar
[2]
M. Murat, C. Comel, Hydration reaction and hardening of calcined clays and related minerals III. Influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite, Cement and Concrete Research, 13 (1983) 631-637.
DOI: 10.1016/0008-8846(83)90052-2
Google Scholar
[3]
M. Frias, O. Rodriguez Largo, R. Garcia Jimenez, I. Vegas, Influence of Activation Temperature on Reaction Kinetics in Recycled Clay Waste-Calcium Hydroxide Systems, Journal of the American Ceramic Society, 91 (2008) 4044-4051.
DOI: 10.1111/j.1551-2916.2008.02807.x
Google Scholar
[4]
A. Tironi, M.A. Trezza, E.F. Irassar, A.N. Scian, Thermal treatment of kaolin: effect on the pozzolanic activity, in: A.F. Armas (Ed. ) 11th International Congress on Metallurgy & Materials Sam/Conamet 20112012, pp.343-350.
DOI: 10.1016/j.mspro.2012.06.046
Google Scholar
[5]
A. Tironi, M.A. Trezza, A.N. Scian, E.F. Irassar, Assessment of pozzolanic activity of different calcined clays, Cement & Concrete Composites, 37 (2013) 319-327.
DOI: 10.1016/j.cemconcomp.2013.01.002
Google Scholar
[6]
C. Bich, J. Ambroise, J. Pera, Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin, Applied Clay Science, 44 (2009) 194-200.
DOI: 10.1016/j.clay.2009.01.014
Google Scholar
[7]
B.B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: a review, Cement & Concrete Composites, 23 (2001) 441-454.
DOI: 10.1016/s0958-9465(00)00092-5
Google Scholar
[8]
R. Fernandez, F. Martirena, K.L. Scrivener, The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite, Cement and Concrete Research, 41 (2011) 113-122.
DOI: 10.1016/j.cemconres.2010.09.013
Google Scholar
[9]
C.A. Love, I.G. Richardson, A.R. Brough, Composition and structure of C-S-H in white Portland cement-20% metakaolin pastes hydrated at 25 degrees C, Cement and Concrete Research, 37 (2007) 109-117.
DOI: 10.1016/j.cemconres.2006.11.012
Google Scholar
[10]
N.J. Coleman, W.R. McWhinnie, The solid state chemistry of metakaolin-blended ordinary Portland cement, Journal of Materials Science, 35 (2000) 2701-2710.
Google Scholar
[11]
M. Frias, The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature, Advances in Cement Research, 18 (2006) 1-6.
DOI: 10.1680/adcr.2006.18.1.1
Google Scholar
[12]
M.S. Morsy, Y.A. Al-Salloum, H. Abbas, S.H. Alsayed, Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures, Construction and Building Materials, 35 (2012) 900-905.
DOI: 10.1016/j.conbuildmat.2012.04.099
Google Scholar
[13]
M.S. Morsy, Effect of temperature on hydration kinetics and stability of hydration phases of metakaolin-lime sludge-silica fume system, Ceramics-Silikaty, 49 (2005) 237-241.
Google Scholar
[14]
W. Aquino, D.A. Lange, J. Olek, The influence of metakaolin and silica fume on the chemistry of alkali-silica reaction products, Cement & Concrete Composites, 23 (2001) 485-493.
DOI: 10.1016/s0958-9465(00)00096-2
Google Scholar
[15]
E. Gueneyisi, M. Gesoglu, K. Mermerdas, Improving strength, drying shrinkage, and pore structure of concrete using metakaolin, Materials and Structures, 41 (2008) 937-949.
DOI: 10.1617/s11527-007-9296-z
Google Scholar
[16]
Z. Shui, T. Sun, Z. Fu, G. Wang, Dominant Factors on the Early Hydration of Metakaolin-Cement Paste, Journal of Wuhan University of Technology-Materials Science Edition, 25 (2010) 849-852.
DOI: 10.1007/s11595-010-0106-z
Google Scholar
[17]
M. Frias, M.I.S. de Rojas, J. Cabrera, The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars, Cement and Concrete Research, 30 (2000) 209-216.
DOI: 10.1016/s0008-8846(99)00231-8
Google Scholar
[18]
F. Cassagnabere, M. Mouret, G. Escadeillas, Early hydration of clinker-slag-metakaolin combination in steam curing conditions, relation with mechanical properties, Cement and Concrete Research, 39 (2009) 1164-1173.
DOI: 10.1016/j.cemconres.2009.07.023
Google Scholar
[19]
F. Cassagnabere, M. Mouret, G. Escadeillas, P. Broilliard, A. Bertrand, Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects, Construction and Building Materials, 24 (2010) 1109-1118.
DOI: 10.1016/j.conbuildmat.2009.12.032
Google Scholar
[20]
A. Tironi, M.A. Trezza, A.N. Scian, E.F. Irassar, Incorporation of calcined clays in mortars: porous structure and compressive strength, in: A.F. Armas (Ed. ) 11th International Congress on Metallurgy & Materials Sam/Conamet 20112012, pp.366-373.
DOI: 10.1016/j.mspro.2012.06.049
Google Scholar
[21]
F. Lagier, K.E. Kurtis, Influence of Portland cement composition on early age reactions with metakaolin, Cement and Concrete Research, 37 (2007) 1411-1417.
DOI: 10.1016/j.cemconres.2007.07.002
Google Scholar
[22]
E. -H. Kadri, S. Kenai, K. Ezziane, R. Siddique, G. De Schutter, Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar, Applied Clay Science, 53 (2011) 704-708.
DOI: 10.1016/j.clay.2011.06.008
Google Scholar
[23]
M. Frias, S. Martinez-Ramirez, Use of micro-Raman spectroscopy to study reaction kinetics in blended white cement pastes containing metakaolin, Journal of Raman Spectroscopy, 40 (2009) 2063-(2068).
DOI: 10.1002/jrs.2372
Google Scholar
[24]
F. Cassagnabere, G. Escadeillas, M. Mouret, Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete, Construction and Building Materials, 23 (2009) 775-784.
DOI: 10.1016/j.conbuildmat.2008.02.022
Google Scholar
[25]
M.S. Morsy, S.H. Alsayed, Y.A. Salloum, Development of eco-friendly binder using metakaolin-fly ash-lime-anhydrous gypsum, Construction and Building Materials, 35 (2012) 772-777.
DOI: 10.1016/j.conbuildmat.2012.04.142
Google Scholar
[26]
M. Arikan, K. Sobolev, T. Ertuen, A. Yeginobali, P. Turker, Properties of blended cements with thermally activated kaolin, Construction and Building Materials, 23 (2009) 62-70.
DOI: 10.1016/j.conbuildmat.2008.02.008
Google Scholar
[27]
F. Cassagnabere, P. Diederich, M. Mouret, G. Escadeillas, M. Lachemi, Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state, Cement & Concrete Composites, 37 (2013) 95-107.
DOI: 10.1016/j.cemconcomp.2012.12.001
Google Scholar
[28]
M. Antoni, J. Rossen, F. Martirena, K. Scrivener, Cement substitution by a combination of metakaolin and limestone, Cement and Concrete Research, 42 (2012) 1579-1589.
DOI: 10.1016/j.cemconres.2012.09.006
Google Scholar
[29]
M.A.M. Johari, J.J. Brooks, S. Kabir, P. Rivard, Influence of supplementary cementitious materials on engineering properties of high strength concrete, Construction and Building Materials, 25 (2011) 2639-2648.
DOI: 10.1016/j.conbuildmat.2010.12.013
Google Scholar
[30]
J.M. Justice, K.E. Kurtis, Influence of metakaolin surface area on properties of cement-based materials, Journal of Materials in Civil Engineering, 19 (2007) 762-771.
DOI: 10.1061/(asce)0899-1561(2007)19:9(762)
Google Scholar
[31]
J.M. Khatib, Metakaolin concrete at a low water to binder ratio, Construction and Building Materials, 22 (2008) 1691-1700.
DOI: 10.1016/j.conbuildmat.2007.06.003
Google Scholar
[32]
J.M. Khatib, Low Temperature Curing of Metakaolin Concrete, Journal of Materials in Civil Engineering, 21 (2009) 362-367.
DOI: 10.1061/(asce)0899-1561(2009)21:8(362)
Google Scholar
[33]
J.M. Khatib, S. Wild, Pore size distribution of metakaolin paste, Cement and Concrete Research, 26 (1996) 1545-1553.
DOI: 10.1016/0008-8846(96)00147-0
Google Scholar
[34]
M. Frias, J. Cabrera, Pore size distribution and degree of hydration of metakaolin-cement pastes, Cement and Concrete Research, 30 (2000) 561-569.
DOI: 10.1016/s0008-8846(00)00203-9
Google Scholar
[35]
E. Aggelakopoulou, A. Bakolas, A. Moropoulou, Properties of lime-metakolin mortars for the restoration of historic masonries, Applied Clay Science, 53 (2011) 15-19.
DOI: 10.1016/j.clay.2011.04.005
Google Scholar
[36]
M.F. Rojas, M.I.S. de Rojas, Influence of metastable hydrated phases on the pore size distribution and degree of hydration of MK-blended cements cured at 60 degrees C, Cement and Concrete Research, 35 (2005) 1292-1298.
DOI: 10.1016/j.cemconres.2004.10.038
Google Scholar
[37]
C.S. Poon, S.C. Kou, L. Lam, Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete, Construction and Building Materials, 20 (2006) 858-865.
DOI: 10.1016/j.conbuildmat.2005.07.001
Google Scholar
[38]
M. Frias, J. Cabrera, Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20 degrees C, Cement and Concrete Research, 31 (2001) 519-527.
DOI: 10.1016/s0008-8846(00)00465-8
Google Scholar
[39]
M. Frias, R. Vigil de la Villa, M.I. Sanchez de Rojas, C. Medina, A. Juan Valdes, Scientific Aspects of Kaolinite Based Coal Mining Wastes in Pozzolan/Ca(OH)2 System, Journal of the American Ceramic Society, 95 (2012) 386-391.
DOI: 10.1111/j.1551-2916.2011.04985.x
Google Scholar
[40]
A. Gameiro, A. Santos Silva, R. Veiga, A. Velosa, Hydration products of lime-metakaolin pastes at ambient temperature with ageing, Thermochimica Acta, 535 (2012) 36-41.
DOI: 10.1016/j.tca.2012.02.013
Google Scholar
[41]
H. Zibara, R.D. Hooton, M.D.A. Thomas, K. Stanish, Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures, Cement and Concrete Research, 38 (2008) 422-426.
DOI: 10.1016/j.cemconres.2007.08.024
Google Scholar
[42]
P. Duan, Z. Shui, W. Chen, C. Shen, Influence of metakaolin on pore structure-related properties and thermodynamic stability of hydrate phases of concrete in seawater environment, Construction and Building Materials, 36 (2012) 947-953.
DOI: 10.1016/j.conbuildmat.2012.06.073
Google Scholar
[43]
M. Kumar, S.K. Singh, N.P. Singh, N.B. Singh, Hydration of multicomponent composite cement: OPC-FA-SF-MK, Construction and Building Materials, 36 (2012) 681-686.
DOI: 10.1016/j.conbuildmat.2012.06.055
Google Scholar