Effect of Low Content of Metakaolin Addition on the Properties and Pore Structure of Concrete

Article Preview

Abstract:

The properties and microstructure of concrete containing 0-6wt% metakaolin (MK) were studied by analytical techniques. The compressive strength increased with the content of MK and reached the maximum by 5wt% MK addition, where the compressive strength increased by 33% at 28 days comparing to the control. The pore structure was refined in the concrete containing MK due to the increase of amount of pores smaller than 10 nm. There is a relationship between average pore diameter and compressive strength.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

411-419

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. He, B. Osbaeck, E. Makovicky, Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects, Cement and Concrete Research, 25 (1995) 1691-1702.

DOI: 10.1016/0008-8846(95)00165-4

Google Scholar

[2] M. Murat, C. Comel, Hydration reaction and hardening of calcined clays and related minerals III. Influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite, Cement and Concrete Research, 13 (1983) 631-637.

DOI: 10.1016/0008-8846(83)90052-2

Google Scholar

[3] M. Frias, O. Rodriguez Largo, R. Garcia Jimenez, I. Vegas, Influence of Activation Temperature on Reaction Kinetics in Recycled Clay Waste-Calcium Hydroxide Systems, Journal of the American Ceramic Society, 91 (2008) 4044-4051.

DOI: 10.1111/j.1551-2916.2008.02807.x

Google Scholar

[4] A. Tironi, M.A. Trezza, E.F. Irassar, A.N. Scian, Thermal treatment of kaolin: effect on the pozzolanic activity, in: A.F. Armas (Ed. ) 11th International Congress on Metallurgy & Materials Sam/Conamet 20112012, pp.343-350.

DOI: 10.1016/j.mspro.2012.06.046

Google Scholar

[5] A. Tironi, M.A. Trezza, A.N. Scian, E.F. Irassar, Assessment of pozzolanic activity of different calcined clays, Cement & Concrete Composites, 37 (2013) 319-327.

DOI: 10.1016/j.cemconcomp.2013.01.002

Google Scholar

[6] C. Bich, J. Ambroise, J. Pera, Influence of degree of dehydroxylation on the pozzolanic activity of metakaolin, Applied Clay Science, 44 (2009) 194-200.

DOI: 10.1016/j.clay.2009.01.014

Google Scholar

[7] B.B. Sabir, S. Wild, J. Bai, Metakaolin and calcined clays as pozzolans for concrete: a review, Cement & Concrete Composites, 23 (2001) 441-454.

DOI: 10.1016/s0958-9465(00)00092-5

Google Scholar

[8] R. Fernandez, F. Martirena, K.L. Scrivener, The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite, Cement and Concrete Research, 41 (2011) 113-122.

DOI: 10.1016/j.cemconres.2010.09.013

Google Scholar

[9] C.A. Love, I.G. Richardson, A.R. Brough, Composition and structure of C-S-H in white Portland cement-20% metakaolin pastes hydrated at 25 degrees C, Cement and Concrete Research, 37 (2007) 109-117.

DOI: 10.1016/j.cemconres.2006.11.012

Google Scholar

[10] N.J. Coleman, W.R. McWhinnie, The solid state chemistry of metakaolin-blended ordinary Portland cement, Journal of Materials Science, 35 (2000) 2701-2710.

Google Scholar

[11] M. Frias, The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature, Advances in Cement Research, 18 (2006) 1-6.

DOI: 10.1680/adcr.2006.18.1.1

Google Scholar

[12] M.S. Morsy, Y.A. Al-Salloum, H. Abbas, S.H. Alsayed, Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures, Construction and Building Materials, 35 (2012) 900-905.

DOI: 10.1016/j.conbuildmat.2012.04.099

Google Scholar

[13] M.S. Morsy, Effect of temperature on hydration kinetics and stability of hydration phases of metakaolin-lime sludge-silica fume system, Ceramics-Silikaty, 49 (2005) 237-241.

Google Scholar

[14] W. Aquino, D.A. Lange, J. Olek, The influence of metakaolin and silica fume on the chemistry of alkali-silica reaction products, Cement & Concrete Composites, 23 (2001) 485-493.

DOI: 10.1016/s0958-9465(00)00096-2

Google Scholar

[15] E. Gueneyisi, M. Gesoglu, K. Mermerdas, Improving strength, drying shrinkage, and pore structure of concrete using metakaolin, Materials and Structures, 41 (2008) 937-949.

DOI: 10.1617/s11527-007-9296-z

Google Scholar

[16] Z. Shui, T. Sun, Z. Fu, G. Wang, Dominant Factors on the Early Hydration of Metakaolin-Cement Paste, Journal of Wuhan University of Technology-Materials Science Edition, 25 (2010) 849-852.

DOI: 10.1007/s11595-010-0106-z

Google Scholar

[17] M. Frias, M.I.S. de Rojas, J. Cabrera, The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars, Cement and Concrete Research, 30 (2000) 209-216.

DOI: 10.1016/s0008-8846(99)00231-8

Google Scholar

[18] F. Cassagnabere, M. Mouret, G. Escadeillas, Early hydration of clinker-slag-metakaolin combination in steam curing conditions, relation with mechanical properties, Cement and Concrete Research, 39 (2009) 1164-1173.

DOI: 10.1016/j.cemconres.2009.07.023

Google Scholar

[19] F. Cassagnabere, M. Mouret, G. Escadeillas, P. Broilliard, A. Bertrand, Metakaolin, a solution for the precast industry to limit the clinker content in concrete: Mechanical aspects, Construction and Building Materials, 24 (2010) 1109-1118.

DOI: 10.1016/j.conbuildmat.2009.12.032

Google Scholar

[20] A. Tironi, M.A. Trezza, A.N. Scian, E.F. Irassar, Incorporation of calcined clays in mortars: porous structure and compressive strength, in: A.F. Armas (Ed. ) 11th International Congress on Metallurgy & Materials Sam/Conamet 20112012, pp.366-373.

DOI: 10.1016/j.mspro.2012.06.049

Google Scholar

[21] F. Lagier, K.E. Kurtis, Influence of Portland cement composition on early age reactions with metakaolin, Cement and Concrete Research, 37 (2007) 1411-1417.

DOI: 10.1016/j.cemconres.2007.07.002

Google Scholar

[22] E. -H. Kadri, S. Kenai, K. Ezziane, R. Siddique, G. De Schutter, Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar, Applied Clay Science, 53 (2011) 704-708.

DOI: 10.1016/j.clay.2011.06.008

Google Scholar

[23] M. Frias, S. Martinez-Ramirez, Use of micro-Raman spectroscopy to study reaction kinetics in blended white cement pastes containing metakaolin, Journal of Raman Spectroscopy, 40 (2009) 2063-(2068).

DOI: 10.1002/jrs.2372

Google Scholar

[24] F. Cassagnabere, G. Escadeillas, M. Mouret, Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete, Construction and Building Materials, 23 (2009) 775-784.

DOI: 10.1016/j.conbuildmat.2008.02.022

Google Scholar

[25] M.S. Morsy, S.H. Alsayed, Y.A. Salloum, Development of eco-friendly binder using metakaolin-fly ash-lime-anhydrous gypsum, Construction and Building Materials, 35 (2012) 772-777.

DOI: 10.1016/j.conbuildmat.2012.04.142

Google Scholar

[26] M. Arikan, K. Sobolev, T. Ertuen, A. Yeginobali, P. Turker, Properties of blended cements with thermally activated kaolin, Construction and Building Materials, 23 (2009) 62-70.

DOI: 10.1016/j.conbuildmat.2008.02.008

Google Scholar

[27] F. Cassagnabere, P. Diederich, M. Mouret, G. Escadeillas, M. Lachemi, Impact of metakaolin characteristics on the rheological properties of mortar in the fresh state, Cement & Concrete Composites, 37 (2013) 95-107.

DOI: 10.1016/j.cemconcomp.2012.12.001

Google Scholar

[28] M. Antoni, J. Rossen, F. Martirena, K. Scrivener, Cement substitution by a combination of metakaolin and limestone, Cement and Concrete Research, 42 (2012) 1579-1589.

DOI: 10.1016/j.cemconres.2012.09.006

Google Scholar

[29] M.A.M. Johari, J.J. Brooks, S. Kabir, P. Rivard, Influence of supplementary cementitious materials on engineering properties of high strength concrete, Construction and Building Materials, 25 (2011) 2639-2648.

DOI: 10.1016/j.conbuildmat.2010.12.013

Google Scholar

[30] J.M. Justice, K.E. Kurtis, Influence of metakaolin surface area on properties of cement-based materials, Journal of Materials in Civil Engineering, 19 (2007) 762-771.

DOI: 10.1061/(asce)0899-1561(2007)19:9(762)

Google Scholar

[31] J.M. Khatib, Metakaolin concrete at a low water to binder ratio, Construction and Building Materials, 22 (2008) 1691-1700.

DOI: 10.1016/j.conbuildmat.2007.06.003

Google Scholar

[32] J.M. Khatib, Low Temperature Curing of Metakaolin Concrete, Journal of Materials in Civil Engineering, 21 (2009) 362-367.

DOI: 10.1061/(asce)0899-1561(2009)21:8(362)

Google Scholar

[33] J.M. Khatib, S. Wild, Pore size distribution of metakaolin paste, Cement and Concrete Research, 26 (1996) 1545-1553.

DOI: 10.1016/0008-8846(96)00147-0

Google Scholar

[34] M. Frias, J. Cabrera, Pore size distribution and degree of hydration of metakaolin-cement pastes, Cement and Concrete Research, 30 (2000) 561-569.

DOI: 10.1016/s0008-8846(00)00203-9

Google Scholar

[35] E. Aggelakopoulou, A. Bakolas, A. Moropoulou, Properties of lime-metakolin mortars for the restoration of historic masonries, Applied Clay Science, 53 (2011) 15-19.

DOI: 10.1016/j.clay.2011.04.005

Google Scholar

[36] M.F. Rojas, M.I.S. de Rojas, Influence of metastable hydrated phases on the pore size distribution and degree of hydration of MK-blended cements cured at 60 degrees C, Cement and Concrete Research, 35 (2005) 1292-1298.

DOI: 10.1016/j.cemconres.2004.10.038

Google Scholar

[37] C.S. Poon, S.C. Kou, L. Lam, Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete, Construction and Building Materials, 20 (2006) 858-865.

DOI: 10.1016/j.conbuildmat.2005.07.001

Google Scholar

[38] M. Frias, J. Cabrera, Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20 degrees C, Cement and Concrete Research, 31 (2001) 519-527.

DOI: 10.1016/s0008-8846(00)00465-8

Google Scholar

[39] M. Frias, R. Vigil de la Villa, M.I. Sanchez de Rojas, C. Medina, A. Juan Valdes, Scientific Aspects of Kaolinite Based Coal Mining Wastes in Pozzolan/Ca(OH)2 System, Journal of the American Ceramic Society, 95 (2012) 386-391.

DOI: 10.1111/j.1551-2916.2011.04985.x

Google Scholar

[40] A. Gameiro, A. Santos Silva, R. Veiga, A. Velosa, Hydration products of lime-metakaolin pastes at ambient temperature with ageing, Thermochimica Acta, 535 (2012) 36-41.

DOI: 10.1016/j.tca.2012.02.013

Google Scholar

[41] H. Zibara, R.D. Hooton, M.D.A. Thomas, K. Stanish, Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures, Cement and Concrete Research, 38 (2008) 422-426.

DOI: 10.1016/j.cemconres.2007.08.024

Google Scholar

[42] P. Duan, Z. Shui, W. Chen, C. Shen, Influence of metakaolin on pore structure-related properties and thermodynamic stability of hydrate phases of concrete in seawater environment, Construction and Building Materials, 36 (2012) 947-953.

DOI: 10.1016/j.conbuildmat.2012.06.073

Google Scholar

[43] M. Kumar, S.K. Singh, N.P. Singh, N.B. Singh, Hydration of multicomponent composite cement: OPC-FA-SF-MK, Construction and Building Materials, 36 (2012) 681-686.

DOI: 10.1016/j.conbuildmat.2012.06.055

Google Scholar