Sonophotocatalytic Degradation and Mineralization of Bisphenol A in a Sequential Ultrasound Intensified Photocatalytic Reactor

Article Preview

Abstract:

A sequential ultrasound intensified photocatalytic reactors was investigated to degrade and mineralize typical endocrine disruptor, bisphenol A (BPA) using nanometer TiO2 as photocatalyst. The process parameters i.e., US power, TiO2 dosages, air flow rate and circulating liquid velocity of the reactors were optimized of the process. Under the optimum operation condition, nearly 90% and 80% BPA was degraded and mineralized in the reactor within 2.5 h. The combination of sonolysis and photocatalysis of TiO2 exhibits a synergetic effect, and benefits for BPA mineralization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

538-542

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Stephan, L. Ludovic, W. Dominique, Modelling of a falling thin film deposited photocatalytic step reactor for water purification: Pesticide treatment, Chem. Eng. J. 169 (2011) 216-225.

DOI: 10.1016/j.cej.2011.03.016

Google Scholar

[2] S. Flint, T. Markle, S. Thompson, E. Wallace, Bisphenol A exposure, effects, and policy: A wildlife perspective, J. Environ. Manage. 104 (2012) 19-34.

DOI: 10.1016/j.jenvman.2012.03.021

Google Scholar

[3] C.L. Bianchi, C. Pirola, V. Ragaini, E. Selli, Mechanism and efficiency of atrazine degradation under combined oxidation processes, Appl. Catal. B: Environ. 64 (2006) 131-138.

DOI: 10.1016/j.apcatb.2005.11.009

Google Scholar

[4] D.P. Mohapatra, S.K. Brar, R.D. Tyagi, R.Y. Surampalli, Physico-chemical pre-treatment and biotransformation of wastewater and wastewater Sludge–Fate of bisphenol A, Chemosphere 78 (2010) 923-941.

DOI: 10.1016/j.chemosphere.2009.12.053

Google Scholar

[5] M.A. Rauf, M.A. Meetani, S. Hisaindee, An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals, Desalination 276 (2011) 13-27.

DOI: 10.1016/j.desal.2011.03.071

Google Scholar

[6] K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photochem. Photobio. C: Photochem. Rev. 13(2012) 169-189.

Google Scholar

[7] M. d. l.M. Ballari, R. Brandi, O. Alfano, A. Cassano, Mass transfer limitations in photocatalytic reactors employing titanium dioxide suspensions: II. External and internal particle constrains for the reaction, Chem. Eng. J. 136 (2008) 242-255.

DOI: 10.1016/j.cej.2007.03.031

Google Scholar

[8] C.G. Joseph, G. Li Puma, A. Bono, D. Krishnaiah, Sonophotocatalysis in advanced oxidation process: A short review, Ultrason. Sonochem. 16 (2009) 583-589.

DOI: 10.1016/j.ultsonch.2009.02.002

Google Scholar

[9] Z. Cheng, X. Quan, Y. Xiong, L. Yang, Y. Huang, Synergistic degradation of methyl orange in an ultrasound intensified photocatalytic reactor, Ultrason. Sonochem. 19 (2012) 1027-1032.

DOI: 10.1016/j.ultsonch.2012.02.008

Google Scholar

[10] M.T. Taghizadeh, R. Abdollahi, Sonolytic, sonocatalytic and sonophotocatalytic degradation of chitosan in the presence of TiO2 nanoparticles, Ultrason. Sonochem. 18 (2011) 149-157.

DOI: 10.1016/j.ultsonch.2010.04.004

Google Scholar

[11] W. -S. Chen, S. -C. Huang, Sonophotocatalytic degradation of dinitrotoluenes and trinitrotoluene in industrial wastewater, Chem. Eng. J. 172 (2011) 944-951.

DOI: 10.1016/j.cej.2011.07.006

Google Scholar

[12] B. Neppolian, L. Ciceri, C.L. Bianchi, F. Grieser, M. Ashokkumar, Sonophotocatalytic degradation of 4-chlorophenol using Bi2O3/TiZrO4 as a visible light responsive photocatalyst, Ultrason. Sonochem. 18 (2011) 135-139.

DOI: 10.1016/j.ultsonch.2010.04.002

Google Scholar

[13] I.N. Martyanov, E.N. Savinov, K.J. Klabunde, Influence of solution composition and ultrasonic treatment on optical spectra of TiO2 aqueous suspensions, J. Colloid Interf. Sci. 267 (2003) 111-116.

DOI: 10.1016/s0021-9797(03)00678-7

Google Scholar

[14] S. Kaur, V. Singh, Visible light induced sonophotocatalytic degradation of Reactive Red dye 198 using dye sensitized TiO2, Ultrason. Sonochem. 14 (2007) 531-537.

DOI: 10.1016/j.ultsonch.2006.09.015

Google Scholar

[15] W. Nam, J. Kim, G. Han, Photocatalytic oxidation of methyl orange in a three-phase fluidized bed reactor, Chemosphere 47 (2002) 1019-1024.

DOI: 10.1016/s0045-6535(01)00327-7

Google Scholar

[16] J. Madhavan, F. Grieser, M. Ashokkumar, Degradation of orange-G by advanced oxidation processes, Ultrason. Sonochem. 17 (2010) 338-343.

DOI: 10.1016/j.ultsonch.2009.10.008

Google Scholar