Experimental Analysis of Residual Stress in Friction Stir Processed Cast AlSi9Mg Aluminium Alloy

Article Preview

Abstract:

The relationship between friction stir processing (FSP) parameters and longitudinal residual stress profiles in modified cast aluminium alloy AlSi9Mg is presented. The influence of tool geometry, rotational speed and the number of processing passes were analysed. To experimentally measure residual stress, the trepanation method was adopted. The results indicated that an increase in the rotational speed caused an increase in the residual stress. Also, the Triflute tool promoted a higher level of residual stress than a conventional FSP tool. The region around the FSP bead was characterised by tensile residual stress fields that were balanced by compressive stresses in the parent material. A higher residual stress is observed on the advancing side than on the retreating side. An increase in the number of processing passes increased the level of residual stress in the modified material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-23

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Wrobel, J. Szajnar, Modification of pure al and AlSi2 alloy primary structure with use of electromagnetic stirring method, Archives of Metallurgy and Materials 58 (2013) 941-944.

DOI: 10.2478/amm-2013-0106

Google Scholar

[2] M. St. Węglowski, S. Dymek, Relationship between Friction Stir Processing parameters and torque, temperature and the penetration depth of the tool, Archives of Civil and Mechanical Engineering 13 (2013) 186-191.

DOI: 10.1016/j.acme.2013.01.003

Google Scholar

[3] M.L. Santella, T. Engstrom, D. Storjohann, T. -Y. Pan, Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356, Scripta Materialia 53 (2005) 201-206.

DOI: 10.1016/j.scriptamat.2005.03.040

Google Scholar

[4] B. Rams, A. Pietras, K. Mroczka, Friction stir welding of elements made of cast aluminium alloy, Archives of Metallurgy and Materials 59 (2014) 385-392.

DOI: 10.2478/amm-2014-0064

Google Scholar

[5] A. Węglowska, Effect of vibration welding parameters on the quality of joints made of polyamide 66, Polimery 59 (2014) 239-245.

DOI: 10.14314/polimery.2014.239

Google Scholar

[6] A. Węglowska, A. Pietras, Influence of the welding parameters on the structure and mechanical properties of vibration welded joints of dissimilar grades of nylons, Archives of Civil and Mechanical Engineering 12 (2012) 198-204.

DOI: 10.1016/j.acme.2012.03.009

Google Scholar

[7] A. Węglowska, Research into linear vibration welding of glass fibres reinforced nylon 66, Welding in the World 59 (2015) 339-352.

DOI: 10.1007/s40194-014-0203-2

Google Scholar

[8] M. St. Weglowski, K. Kwiecinski, K. Krasnowski, R. Jachym, Characteristics of Nd: YAG laser welded joints of dual phase steel, Archives of Civil and Mechanical Engineering 9 (2009) 85-97.

DOI: 10.1016/s1644-9665(12)60072-7

Google Scholar

[9] M. St. Weglowski, S. Stano, K. Krasnowski, M. Lomozik, K. Kwiecinski, R. Jachym, Characteristics of Laser Welded Joints of HDT580X Steel, Materials Science Forum 638-642 (2010) 3739-3744.

DOI: 10.4028/www.scientific.net/msf.638-642.3739

Google Scholar

[10] A. Steuwer, M.J. Peel, P.J., Withers, Dissimilar friction stir welds in AA5083–AA6082: The effect of process parameters on residual stress, Mat Sci Eng A 441 (2006) 187–196.

DOI: 10.1016/j.msea.2006.08.012

Google Scholar

[11] M. Peel, A. Steuwer, M. Preuss and P. J. Withers, Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Mater, 51 (2003) 4791-4801.

DOI: 10.1016/s1359-6454(03)00319-7

Google Scholar

[12] M. St., Węglowski, P. Sedek, C. Hamilton, Experimental and numerical analysis of residual stress in cast aluminum alloy after FSP process, Key Engineering Materials 651-653 (2015) 1563-1568.

DOI: 10.4028/www.scientific.net/kem.651-653.1563

Google Scholar

[13] S. Sadeghi, M.A. Najafabadi, Y. Javadi, M. Mohammadisefat, Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates, Materials and Design 52 (2013).

DOI: 10.1016/j.matdes.2013.06.032

Google Scholar

[14] D.R. Ni, D.L. Chen B.L. Xiao, D. Wang, Z.Y. Ma, Residual stresses and high cycle fatigue properties of friction stir welded SiCp/AA2009 composites, International Journal of Fatigue 55 (2013) 64–73.

DOI: 10.1016/j.ijfatigue.2013.05.010

Google Scholar

[15] C. Hamilton, M. Kopyściański, O. Senkov, S. Dymek, A Coupled Thermal/Material Flow Model of Friction Stir Welding Applied to Sc-Modified Aluminum Alloys, Metallurgical and Materials Transactions A, 44 (2013) 1730-1740.

DOI: 10.1007/s11661-012-1512-y

Google Scholar

[16] C. Hamilton, M. St. Węglowski, S. Dymek, A simulation of friction stir processing for temperature and material flow, Metall Mater Trans B, 46 (2015) 1409-1418.

DOI: 10.1007/s11663-015-0340-z

Google Scholar

[17] C. Hamilton, M. St. Węglowski, S. Dymek, P. Sedek, Using a Coupled Thermal/Material Flow Model to Predict Residual Stress in Friction Stir Processed AlMg9Si, Journal of Materials Engineering and Performance 24 (2015) 1305-1312.

DOI: 10.1007/s11665-015-1402-8

Google Scholar

[18] Z.Y. Ma, S.R. Sharma, R.S. Mishra, Microstructural Modification of As-Cast Al-Si-Mg Alloy by Friction Stir Processing, Metallurgical and Materials Transactions A 37A (2006) 3323-3336.

DOI: 10.1007/bf02586167

Google Scholar