Mass Transfer at Atomic Scale in MD Simulation of Friction Stir Welding

Article Preview

Abstract:

Mass transfer has been studied at atomic scale by molecular dynamics simulation of friction stir welding and vibration-assisted friction stir welding using the modified embedded atom potential. It was shown that increasing the velocity movement and decreasing the angle velocity of the tool reduce the penetration depth of atoms into the opposite crystallite in the connected pair of metals. It was shown also that increasing the amplitude of vibrations applied to the friction stir welding tool results in increasing the interpenetration of atoms belonging to the crystallites joined

You might also be interested in these eBooks

Info:

Periodical:

Pages:

626-631

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Weman, Welding Processes Handbook, Elsevier, (2011).

Google Scholar

[2] R.S. Mishra, Friction Stir Welding and Processing, ASM International, (2007).

Google Scholar

[3] O. Sizova, A. Kolubaev, E. Kolubaev, A. Zaikina, V. Rubtsov, S. Psakhie, A. Chernyavsky, V. Lopota, The microstructure of aluminum-magnesium alloy friction Stir weld, AIP Conf. Proc. 1623 (2014) 587-590.

DOI: 10.1063/1.4899013

Google Scholar

[4] S. Yu. Tarasov, V.E. Rubtsov, E.A. Kolubaev, A proposed diffusion-controlled wear mechanism of alloy steel friction stir welding (FSW) tools used on an aluminum alloy, Wear 318(1-2) (2014) 130-134.

DOI: 10.1016/j.wear.2014.06.014

Google Scholar

[5] A.I. Dmitriev, W. Österle, H. Kloss, Numerical simulation of typical contact situations of brake friction materials, Tribol. Intern. 41(1) (2008) 1-8.

DOI: 10.1016/j.triboint.2007.04.001

Google Scholar

[6] A.I. Dmitriev, A. Yu. Nikonov, S.G. Psakhie, Atomistic mechanism of grain boundary sliding with the example of a large-angle boundary Σ=5. Molecular dynamics calculation, Phys. mesomech. 14(1-2) (2011) 24-31.

DOI: 10.1016/j.physme.2011.04.004

Google Scholar

[7] Iv.S. Konovalenko, D.S. Kryzhevich, K.P. Zol'nikov, S.G. Psakhie, Atomic mechanisms of local structural rearrangements in strained crystalline titanium grain, Tech. Phys. Let. 37(10) (2011) 946-948.

DOI: 10.1134/s1063785011100233

Google Scholar

[8] S.G. Psakhie, K.P. Zol'nikov, A.I. Dmitriev, D.S. Kryzhevich, A.Y. Nikonov, Local structural transformations in the FCC lattice in various contact interaction. Molecular dynamics study, Phys. Mesomech. 15(3-4) (2012) 147-154.

DOI: 10.1134/s1029959912020026

Google Scholar

[9] Information on http: /lammps. sandia. gov.

Google Scholar

[10] A. Ostapovets, P. Molnar, P. Lejcek, Boundary plane distribution for Sigma 13 grain boundaries in magnesium, Mater. let. 137 (2014) 102-105.

DOI: 10.1016/j.matlet.2014.08.152

Google Scholar

[11] C. Hu, M. Bai, J. Lv, H. Liu, X. Li, Molecular dynamics investigation of the effect of copper nanoparticle on the solid contact between friction surfaces, Appl. Surf. Sci. 321 (2014) 302-309.

DOI: 10.1016/j.apsusc.2014.10.006

Google Scholar

[12] K. Xiong, X. Liu, J. Gu, Orientation-dependent crystal instability of gamma-TiAl in nanoindentation investigated by a multiscale interatomic potential finite-element model, Model. Simulat. Mater. Sci. Eng. 22 (2014) 085013.

DOI: 10.1088/0965-0393/22/8/085013

Google Scholar

[13] B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S. G. Kim, G. J. Wagner, A. Moitra, M. I. Baskes, Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys, Phys. Rev. B. 85 (2012) 245102.

DOI: 10.1103/physrevb.85.245102

Google Scholar