Study of Localized Plastic Deformation of Hadfield Steel Single Crystals Using Speckle Photography Technique

Article Preview

Abstract:

The evolution of local strain during stretching of high-manganese carbon austenite (Hadfield steel) was studied. The ordered patterns of strain localization proved to be closely related to the stages in the stress–strain curve. The results of this study are compared with analogous data for chromium–nickel nitrogen austenite single crystals. The velocity of self-consistent motion of the sites where plastic strain during stretching of gamma-Fe single crystals is nonuniform was determined as a function of the strain hardening coefficient and deformation mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-89

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.A. Barannikova, Localization of stretching strain in doped carbon gamma-Fe single crystals, Tech. Phys. 45 (2000) 1368–1370.

DOI: 10.1134/1.1318982

Google Scholar

[2] V.I. Danilov, S.A. Barannikova, L.B. Zuev, Localized strain autowaves at the initial stages of plastic flow in single crystals, Tech. Phys. 48 (2003) 1429–1435.

DOI: 10.1134/1.1626775

Google Scholar

[3] S.A. Barannikova, Dispersion of the plastic strain localization waves, Tech. Phys. Lett. 30 (2004) 338–340.

DOI: 10.1134/1.1748618

Google Scholar

[4] L.B. Zuev, S.A. Barannikova, Experimental study of plastic flow macro-scale localization process: pattern, propagation rate, dispersion, Int. J. Mech. Sci. 88 (2014) 1–8.

DOI: 10.1016/j.ijmecsci.2014.06.012

Google Scholar

[5] V.A. Davydov, N.V. Davydov, V.G. Morozov, M.N. Stolyarov, T. Yamaguchi, Autowaves in moving excitable media, Cond. Matt. Phys. 7 (2004) 565–578.

DOI: 10.5488/cmp.7.3.565

Google Scholar

[6] R.N. Mudrock, M.A. Lebyodkin, P. Kurath, A. Beaudoin, T.A. Lebedkina, Strain-rate fluctuations during macroscopically uniform deformation of a solid strengthened alloy, Scr. Mater. 65 (2011) 1093–95.

DOI: 10.1016/j.scriptamat.2011.09.025

Google Scholar

[7] A. Roth, T.A. Lebedkina, M.A. Lebyodkin, On the critical strain for the onset of plastic instability in an austenitic FeMnC steel, Mater. Sci. Eng. A. 539 (2012) 280–84.

DOI: 10.1016/j.msea.2012.01.094

Google Scholar

[8] C.C. Aydıner, M.A. Telemez, Multiscale deformation heterogeneity in twinning magnesium investigated with in situ image correlation, Int. J. Plast. 56 (2014) 203–218.

DOI: 10.1016/j.ijplas.2013.12.001

Google Scholar

[9] J.F. Hallai, S. Kyriakides, Underlying material response for Lüders-like instabilities, Int. J. Plast. 47 (2013) 1–12.

DOI: 10.1016/j.ijplas.2012.12.002

Google Scholar

[10] G.Z. Voyiadjis, D. Faghihi, Gradient plasticity for thermo-mechanical processes in metals with length and time scales, Phil. Mag. A93 (2013) 1013–1053.

DOI: 10.1080/14786435.2012.740576

Google Scholar

[11] L. Kubin, B. Devincre, T. Hoc, Toward a physical model for strain hardening in fcc crystals, Mat. Sci. Eng. 483-484 (2008) 19–24.

DOI: 10.1016/j.msea.2007.01.167

Google Scholar

[12] P.H. Adler, G.B. Olson, W.S. Owen, Strain hardening of Hadfield manganese steel, Metall. Trans. A. 17 (1986) 1725–1737.

DOI: 10.1007/bf02817271

Google Scholar

[13] K.S. Raghavan, A.S. Sastri, M.J. Marcinkowski, Nature of the work-hardening Hadfield's manganese steel, Trans. Metall. Soc. AIME. 245 (1969) 1569–1575.

Google Scholar

[14] Y.N. Dastur, W.C. Leslie, Mechanism of work hardening in Hadfield manganese steel, Metall. Trans. A. 12 (1981) 749–759.

DOI: 10.1007/bf02648339

Google Scholar

[15] W.S. Owen, M. Grujicic, Strain aging of austenitic Hadfield manganese steel, Acta Mater. 47 (1999) 111–126.

DOI: 10.1016/s1359-6454(98)00347-4

Google Scholar

[16] I. Karaman, H. Sehitoglu, K. Gall, Yu.I. Chumlyakov, Deformation of single crystal Hadfield steel by twinning and slip, Acta. Mater. 48 (2000) 1345–1359.

DOI: 10.1016/s1359-6454(99)00383-3

Google Scholar

[17] I. Karaman, H. Sehitoglu, Yu. I. Chumlyakov, On the deformation mechanisms in single crystal Hadfield manganese steel, Scr. Mater. 38 (1998) 1009–1015.

DOI: 10.1016/s1359-6462(97)00581-2

Google Scholar

[18] I. Karaman, H. Sehitogly, Y.I. Chumlyakov, H.J. Maier, I.V. Kireeva, The effect of twinning and slip on the Bauschinger effect of Hadfield steel single crystals, Metal. Mater. Trans. 32A (2001) 695–706.

DOI: 10.1007/s11661-001-0086-x

Google Scholar

[19] G.G. Zakharova, E.G. Astafurova, The influence of severe plastic deformation by high pressure torsion on structure and mechanical properties of Hadfield steel single crystals, IOP: Conf. Ser. 240 (2010) 012139: 1–4.

DOI: 10.1088/1742-6596/240/1/012139

Google Scholar

[20] L. B Zuev., V.V. Gorbatenko, K.V. Pavlichev, Elaboration of speckle photography techniques for plastic flow analyses, Meas. Sci. Tech. 21 (2010) 1–5.

DOI: 10.1088/0957-0233/21/5/054014

Google Scholar

[20] R. Jones, C. Wykes, Holographic and Speckle Interferometry, Cambridge University Press, Cambridge, (1983).

Google Scholar

[21] T.Y. Thomas, Plastic Flow and Fracture in Solids, Academic, New York, (1961).

Google Scholar

[22] E.A. Nikitin, B.S. Semukhin, L.B. Zuev, Localized plastic flow and spatiotemporal distribution of acoustic emission in steel, Tech. Phys. Let. 34 (2008) 666–667.

DOI: 10.1134/s1063785008080129

Google Scholar