The Influence of Hydrogen on the Process of Plastic Flow Self-Organization in Ti

Article Preview

Abstract:

The paper presents the study of the effect of hydrogenation on the mechanical properties of commercially pure titanium. It has been found that the localized deformation zones occurring in the plastically deforming Ti samples are stationary dissipative structures. The kinetics of dissipative structure evolution was studied. The hydrogenation treatment is found to enhance a tendency to strain localization in as-treated material, which affects significantly material strength properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

601-606

Citation:

Online since:

February 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.L. Wasz, F.R. Brotzen, R.B. McLellan, Jr. A.J. Griffin, Effect of oxygen and hydrogen on mechanical properties of commercial purity titanium, International Materials Reviews, 41(1996) 1-12.

DOI: 10.1179/imr.1996.41.1.1

Google Scholar

[2] D. F Teter, I. M Robertson, H. K Birnbaum, The effects of hydrogen on the deformation and fracture of β-titanium, Acta Materialia, 49(2001) 4313-4323.

DOI: 10.1016/s1359-6454(01)00301-9

Google Scholar

[3] C.L. Briant, Z.F. Wang, N. Chollocoop, Hydrogen embrittlement of commercial purity titanium, Corrosion Science, 44(2002) 1875-1888.

DOI: 10.1016/s0010-938x(01)00159-7

Google Scholar

[4] E. Tal-Gutelmacher, D. Eliezer, The hydrogen embrittlement of titanium-based alloys JOM, 57(2005) 46-49.

DOI: 10.1007/s11837-005-0115-0

Google Scholar

[5] Lu Junqiang, Qin Jining, Lu Weijie, Chen Yifei, Zhang Di, Hou Hongliang, Effect of hydrogen on superplastic deformation of (TiB + TiC)/Ti–6Al–4V composite, International Journal of Hydrogen Energy, 34(2009) 8308-8314.

DOI: 10.1016/j.ijhydene.2009.07.091

Google Scholar

[6] E.N. Stepanova, G.P. Grabovetskaya, O.V. Zabudchenko, I.P. Mishin, Strain behavior of the hydrogenated submicrocrystalline Ti-6Al-4V alloy, Russian Physics Journal, 54(2011) 690-696.

DOI: 10.1007/s11182-011-9671-7

Google Scholar

[7] H. Numakura, M. Koiwa, Hydride precipitation in titanium, Acta Metallurgica, 32(1984) 1799-1807.

DOI: 10.1016/0001-6160(84)90236-0

Google Scholar

[8] Jun Song, W.A. Curtin, A nanoscale mechanism of hydrogen embrittlement in metals, Acta Materialia, 59(2011) 1557-1569.

DOI: 10.1016/j.actamat.2010.11.019

Google Scholar

[9] Weimin Gao, Weiqi Li, Jin Zhou, Peter D. Hodgson, Thermodynamics approach to the hydrogen diffusion and phase transformation in titanium particles, Journal of Alloys and Compounds, 509(2011) 2523-2529.

DOI: 10.1016/j.jallcom.2010.11.073

Google Scholar

[10] C.P. Liang, H.R. Gong, Fundamental influence of hydrogen on various properties of α-titanium, International Journal of Hydrogen Energy, 35(2010) 3812-3816.

DOI: 10.1016/j.ijhydene.2010.01.080

Google Scholar

[11] C.P. Liang, H.R. Gong, Structural stability, mechanical property and phase transition of the Ti–H system, International Journal of Hydrogen Energy, 35(2010) 11378-11386.

DOI: 10.1016/j.ijhydene.2010.07.074

Google Scholar

[12] F.H. Froes, O.N. Senkov, J.I. Qazi, Hydrogen as a temporary alloying element in titanium alloys: Thermohydrogen processing, International Materials Reviews, 49(2004) 227-245.

DOI: 10.1179/095066004225010550

Google Scholar

[13] L.B. Zuev, V.I. Danilov, S.A. Barannikova, V.V. Gorbatenko, Autowave model of localized plastic flow of solids, Physics of Wave Phenomena, 17(2009) 66-75.

DOI: 10.3103/s1541308x09010117

Google Scholar

[14] L.B. Zuev, S.A. Barannikova, Plastic flow localization viewed as an auto-wave process generated in deforming metals, Solid State Phenomena 172-174(2011) 1279-1283.

DOI: 10.4028/www.scientific.net/ssp.172-174.1279

Google Scholar

[15] S.A. Barannikova, M.V. Nadezhkin, A.G. Lunev, V.V. Gorbatenko, L.B. Zuev, Regularities in localization of plastic flow upon electrolytic hydrogenation of an iron bcc-alloy, Technical Physics Letters, 40(2014) 211-214.

DOI: 10.1134/s1063785014030043

Google Scholar

[16] L.B. Zuev, S.A. Barannikova, Experimental study of plastic flow macro-scale localization process: Pattern, propagation rate, dispersion., International Journal of Mechanical Sciences, 88(2014) 1-7.

DOI: 10.1016/j.ijmecsci.2014.06.012

Google Scholar

[17] Y. Yagodzinskyy, O. Todoshchenko, S. Papula, and H. Hanninen, Hydrogen Solubility and Diffusion in Austenitic Stainless Steels Studied with Thermal Desorption Spectroscopy, Steel research int. 1(2011) 20-25.

DOI: 10.1002/srin.201000227

Google Scholar

[18] L.B. Zuev, S.N. Polyakov, V.V. Gorbatenko, Instrumentation for speckle interferometry and techniques for investigating deformation and fracture, Proceedings of SPIE - The International Society for Optical Engineering, 4900(2002) 1197-1208.

Google Scholar

[19] J.H. Hollomon, Tensile Deformation. Trans, AIME, 162(1945) 268-290.

Google Scholar

[20] V.I. Danilov, D.V. Orlova, L.B. Zuev, On the kinetics of localized plasticity domains emergent at the pre-failure stage of deformation process, Materials and Design, 32(2011), 1554-1558.

DOI: 10.1016/j.matdes.2010.09.031

Google Scholar