[1]
J E.A. Kochegurova, E.V. Shebeko, Usage of variation smoothing spline in short-term prediction problem, Notify of the Tomsk Polytechnic University. 309 (7) (2006) 36-39.
Google Scholar
[2]
D.V. Devyatykh , O.M. Gerget, O.G. Berestneva, Sleep Apnea Detection Based on Dynamic Neural Networks. Communications in Computer and Information Science. 466 (2014) 556-567.
DOI: 10.1007/978-3-319-11854-3_48
Google Scholar
[3]
A.N. Golubinsky, Approximation methods of experimental data and modeling, in: Herald of Voronezh Institute of MIA Russia. 2 (2007) 138-143.
Google Scholar
[4]
B.I. Kvasov, Methods shape preserving spline approximation, Moscow: Fizmatlit. (2006).
Google Scholar
[5]
A.I. Rozhenko, Theory and algorithms for variation spline approximation:. .. Dr. Sci. Diss., 01. 01. 07: Novosibirsk, 2003, 231 p.
Google Scholar
[6]
Y.E. Voskoboynikov, A.B. Kolker, Approximation of the contour image smoothing splines, J. Avtometriya. 39( 4) (2003) 3-12.
Google Scholar
[7]
U.M. Ageev, E.A. Kochegurova, Frequency properties of recurrent smoothing splines, J. Notify of High School, Instrumentmaking. 3 (1990) 3-8.
Google Scholar
[8]
D. L. Ragozin, Error bounds for derivative estimates based on spline smoothing of exact or noise data, Journal of approximation theory. 37 (1983) 335-355.
DOI: 10.1016/0021-9045(83)90042-4
Google Scholar
[9]
A. I. Grebennikov, Algorithms for experimental data analysis allowing for additional a priori information, in: Computational mathematics and modeling, Springer, 2(2) (1991) 148–152.
DOI: 10.1007/bf01128925
Google Scholar
[10]
Jiguo Cao, Jing Cai, L. Wang, Estimating Curves and Derivatives with Parametric Penalized Spline Smoothing, J. Statistics and Computing. 22(5) (2012)1059-1067.
DOI: 10.1007/s11222-011-9278-4
Google Scholar