An Influence of Frictional Model on Temperature Distribution during a Friction Spot Stir Welding Process of Titanium Grade 2

Article Preview

Abstract:

In the paper, the influence of friction on temperature distribution in the friction spot stir welding process of titanium grade 2 is analysed. It is assumed that the friction coefficient may be a function of temperature or the relative speed of the contact areas. The finite element method is used in the numerical calculations. Temperature distributions and temperature versus time for the analysed friction coefficients are presented. The results also show that applying a proper frictional model is very essential for the sake of heat generation during friction stir welding.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-162

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http: /www. twi-global. com.

Google Scholar

[2] R.S. Mishra, Preface to the Viewpoint Set on friction stir processing, Scripta Mater. 58 (2008) 325–326.

DOI: 10.1016/j.scriptamat.2007.10.044

Google Scholar

[3] G. Buffa, J. Hua, R. Shivpuri, L. Fratini, A continuum based fem model for friction stir welding—model development, Mater. Sci. Eng. A 419 (2006) 389–396.

DOI: 10.1016/j.msea.2005.09.040

Google Scholar

[4] C.M. Chen, R. Kovacevic, Parametric finite element analysis of stress evolution during friction stir welding, Proc. IMechE Vol. 220 (2006) Part B: J. Eng. Manuf., 1359-1371.

DOI: 10.1243/09544054jem324

Google Scholar

[5] P. Lacki, Z. Kucharczyk, R.E. Śliwa, T. Gałaczyński, Effect of tool shape on temperature field in friction stir spot welding, Arch. Metall. Mater. 58/2 (2013) 597-601.

DOI: 10.2478/amm-2013-0043

Google Scholar

[6] P.A. Colegrove, H. R. Shercliff, 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, J. Mater. Process. Technol. 169 (2005) 320–327.

DOI: 10.1016/j.jmatprotec.2005.03.015

Google Scholar

[7] R. Nandan, G.G. Roy, T.J. Lienert, T. DebRoy, Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel, Sci. Technol. Weld. Join. 11 (2006) 526-537.

DOI: 10.1179/174329306x107692

Google Scholar

[8] H.W. Zhang, Z. Zhang, J.T. Chen, The finite element simulation of the friction stir welding process, Mater. Sci. Eng. A 403 (2005) 340–348.

DOI: 10.1016/j.msea.2005.05.052

Google Scholar

[9] H.W. Zhang, Z. Zhang, J.T. Chen, 3D modeling of material flow in friction stir welding under different process parameters, J. Mater. Process. Technol. 183 (2007) 62–70.

DOI: 10.1016/j.jmatprotec.2007.06.042

Google Scholar

[10] M. Esmaily, A. Shokuhfar, Numerical simulation of heat transfer in friction stir welding of 7075-T6 aluminum alloy and high carbon steel using Arbitrary Lagrangian Eulerian technique, Mat. -wiss. u. Werkstofftech. 41 (2010) 350-355.

DOI: 10.1002/mawe.201000608

Google Scholar

[11] M. Song, R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation, Int. J. Mach. Tools Manuf. 43 (2003) 605–615.

DOI: 10.1016/s0890-6955(03)00022-1

Google Scholar

[12] S. Hirasawa, H. Badarinarayan, K. Okamoto, T. Tomimura, T. Kawanami, Analysis of effect of tool geometry on plastic flow during friction stir spot welding using particle method, J. Mater. Process. Technol. 210 (2010) 1455–1463.

DOI: 10.1016/j.jmatprotec.2010.04.003

Google Scholar

[13] H. Okuyucu, A. Kurt, E. Arcaklioglu, Artificial neural network application to the friction stir welding of aluminum plates, Mater. Des. 28 (2007) 78–84.

DOI: 10.1016/j.matdes.2005.06.003

Google Scholar

[14] H. Schmidt, J. Hattel, J. Wert, An analytical model for the heat generation in friction stir welding, Modelling Simul. Mater. Sci. Eng. 12 (2004) 143–157.

DOI: 10.1088/0965-0393/12/1/013

Google Scholar

[15] S. Mandal, J. Rice, A.A. Elmustafa, Experimental and numerical investigation of the plunge stage in friction stir welding, J. Mater. Process. Technol. 203 (2008) 411–419.

DOI: 10.1016/j.jmatprotec.2007.10.067

Google Scholar

[16] M. Riahi, H. Nazari, Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation, Int. J. Adv. Manuf. Technol. 55 (2011) 143–152.

DOI: 10.1007/s00170-010-3038-z

Google Scholar

[17] K.J. Colligan, R.S. Mishra, A conceptual model for the process variables related to heat generation in friction stir welding of aluminum, Scripta Mater. 58 (2008) 327–331.

DOI: 10.1016/j.scriptamat.2007.10.015

Google Scholar

[18] Y.J. Chao, X. Qi, W. Tang, Heat Transfer in Friction Stir Welding—Experimental and Numerical Studies, Trans. ASME, J. Manuf. Sci. Eng. 125 (2003) 138-145.

DOI: 10.1115/1.1537741

Google Scholar

[19] P. Lacki, Friction modelling in the bulk metal forming processes, Wydawnictwo Politechniki Częstochowskiej, seria Monografie nr 169, Częstochowa 2010 (in Polish).

Google Scholar

[20] ADINA-AUI, Version 8. 8. 0, 1994-2012 ADINA R&D. Inc.

Google Scholar

[21] K. Adamus, Z. Kucharczyk, K. Wojsyk, K. Kudla, Numerical analysis of electron beam welding of different grade titanium sheets, Comput. Mater. Sci. 77 (2013) 286–294.

DOI: 10.1016/j.commatsci.2013.05.001

Google Scholar

[22] J. Adamus, P. Lacki, M. Motyka, EBW titanium sheets as material for drawn parts. Arch. Civ. Mech. Eng. 15/1 (2015) 42–47.

DOI: 10.1016/j.acme.2014.04.004

Google Scholar

[23] P. Lacki, J. Adamus, W. Więckowski, J. Winowiecka, Evaluation of drawability of titanium welded sheets Arch. Metall. Mater. 58/1 (2013) 139-143.

DOI: 10.2478/v10172-012-0164-7

Google Scholar

[24] J. Adamus, P. Lacki, Analysis of forming titanium welded blanks. Comp. Mater. Sci. 94 (2014) 66–72.

DOI: 10.1016/j.commatsci.2014.01.055

Google Scholar

[25] J. Adamus, M. Motyka, Analysis of tensile test of titanium EBW sheet. Key Eng. Mat. 639 (2015) 339-346.

DOI: 10.4028/www.scientific.net/kem.639.339

Google Scholar

[26] K. Adamus, P. Lacki, The numerical analysis of a titanium sheets welding process and welding joint tensile behavior, Computer Methods in Materials Science 15/1 (2015) 137-143.

Google Scholar

[27] P. Lacki, K. Adamus, Numerical simulation of welding thin titanium sheets, Key Eng. Mat. 549 (2013) 407-414.

DOI: 10.4028/www.scientific.net/kem.549.407

Google Scholar

[28] P. Lacki, K. Adamus, P. Wieczorek, Theoretical and experimental analysis of thermo-mechanical phenomena during electron beam welding process, Comp. Mater. Sci. 94 (2014) 17-26.

DOI: 10.1016/j.commatsci.2014.01.027

Google Scholar