Thermal Treatment of Wood for Mitigating of Climate Change

Article Preview

Abstract:

Among individual techniques of wood treatment, there are highly significant differences in the greenhouse gas balance. Greenhouse gases have, according to the currently adopted global convention, a major impact on global warming and climate change. Nevertheless, there are also sceptical opinions on the scientific basis of such concept. As well as the natural processes of tree growth and the end of their life cycle, the wood processing technologies also affect the balance of greenhouse gases on Earth. The current natural forest without human intervention does not have to reduce greenhouse gas emissions definitely, but can also be the source of their emissions. Also, technological, particularly thermal, processes have different contribution to the production of greenhouse gases. The submitted paper presents the context of warming and cooling of the Earth during its development with a concentration of carbon dioxide in the atmosphere. Further, the indicative greenhouse gas balance, respectively, CO2 generated at thermal wood processing processes, are analysed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

195-203

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.R. Plaimer, Heaven+earth: global warming, the missing science. Connorcourt publishing. Australia, (2009).

Google Scholar

[2] Global carbon emission. Available at: http: /co2now. org/Current-CO2/CO2-Now/global-carbon-emissions. html.

Google Scholar

[3] Ning Zeng: Carbon sequestration via wood burial. Carbon balance management (2008) 1-12.

DOI: 10.1186/1750-0680-3-1

Google Scholar

[4] M. Goel, Recent developments in carbon dioxide capture materials and processes for energy industry, in: N.R. Neelameggham, R.G. Reddy, C.K. Belt, E.E. Vidal, (Eds. ), Energy technology perspectives, Warrendale, 2009, pp.53-62.

Google Scholar

[5] Global Environment Outlook, UNEP Earthscan, London, (2000).

Google Scholar

[6] J. Michalík, What do we know on the Earth climate development? A Project of the Visegrád Foundation Warning against abrupt climate (greenhouse) changes as followed from geological knowledge of the Earth, Mineralia Slovaca 34 (2002) 135-142.

Google Scholar

[7] J. Veizer, Y. Godderis, L. M. Francois, Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon, Nature 408 (2000) 698-701.

DOI: 10.1038/35047044

Google Scholar

[8] W.N. Kürschner, Leaf sensor for CO2 in deep time, Nature 411 (2001) 247-248.

DOI: 10.1038/35077181

Google Scholar

[9] F. Monnin, A. Indermühle, A. Dällenbach, J. Flückiger, B. Stauffer, T.F. Stocker, D. Raynaud, J.M. Barnola, Atmospheric CO2-concentrations over the last glacial termination, Science, 291 (2001) 112-114.

DOI: 10.1126/science.291.5501.112

Google Scholar

[10] M. Reasoner, M.A. Jodry, Rapid response of alpine timerline vegetation to the Younger Dryas climate oscillation in the Colorado Rocky Mountains, USA, Geology 28 (2000) 51-54.

DOI: 10.1130/0091-7613(2000)028<0051:rroatv>2.3.co;2

Google Scholar

[11] V. Cílek, Ocean and atmospheric carbon dioxide (Oceán a oxid uhličitý v atmosfére), Vesmír 71 (1992) 485-490.

Google Scholar

[12] C.  Loehle,  Climate change: detection and attribution of trends from long-term geologic data,  Ecol. Model. 171 (2004) 433-450.

DOI: 10.1016/j.ecolmodel.2003.08.013

Google Scholar

[13] I.G. Usoskin, S.K. Solanki, M. Schüssler, K. Mursula, K. Alanko, A Millennium scale sunspot number reconstruction: Evidence for an unusually active sun since the 1940s. Phys. Rev. Lett. 91 (2003) 1-4.

DOI: 10.1103/physrevlett.91.211101

Google Scholar

[14] S.K. Solanki, I.G. Usoskin, B. Kromer, M. Schüssler, J. Beer, Unusual activity of the Sun during recent decades compared to the previous 11, 000 years, Nature 431 (2004) 1084-1087.

DOI: 10.1038/nature02995

Google Scholar

[15] T. Patterson, The global record and climate change, Regulation and Reality Conference, Toronto, 2004, pp.48-59.

Google Scholar

[16] N.J. Shaviv, J. Veizer, Celestial driver of Phanerozoic climate? Science, VII (2003) 1-9.

Google Scholar

[17] H.N.A. Priem, Climate change: the human influence analysed. European Council of Sceptical Organizations (ESCO) on the occasion of the inauguration of the European Centre for Inquiry. Rossdorf, 2000, pp.1-9.

Google Scholar

[18] A.Y. Davis, R. Ottmar, Y. Liu, S. Goodrick, G. Achtemeier, B. Gullett, J. Aurell, W. Stevens, R. Greenwald, Y. Hu, A. Russell, J.K. Hiers, M.T. Odman, Fire emission uncertainties and their effect on smoke dispersion predictions: a case study at Eglin Air Force Base, Florida, USA, Int. J. Wildland Fire 24 (2015).

DOI: 10.1071/wf13071

Google Scholar

[19] IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inverventories Programe, H.S. Eggleston, Buendia L., Miwa K., Ngara T., and Tanabe K. (eds). Published: IGES, Japan, (2006).

Google Scholar

[20] K.G. Roberts, B.A. Gloy, S. Joseph, N.R. Scott, J. Lehmann, Life cycle assessment of biochar systems: Estimatic the energetic, economic, and climate change potential, Environ. Sci. Technol. 44 (2010) 827-833.

DOI: 10.1021/es902266r

Google Scholar

[21] J. Lehman, S. Josseph, Biochar for environmental management: science and technology, Earthscan from Routledge in the UK and USA, (2006).

Google Scholar

[22] M.K. Herwig, U.S. Patent 5, 026, 403. (1991).

Google Scholar

[23] A. Constantine, U.S. Patent 5, 279, 712. (1994).

Google Scholar

[24] Y. Berman, U.S. Patent 6, 558, 644. (2003).

Google Scholar

[25] J. Michael, Jr. Antal, U.S. Patent 6, 790, 317. (2004).

Google Scholar

[26] P. Bober, A. Oriňák, R. Oriňáková, P. Zamostný, J. Ladomerský, A. Fedorková, Hydrogen production by catalysed pyrolysis of polymer blends, Fuel 90 (2011) 2334-2339.

DOI: 10.1016/j.fuel.2011.02.001

Google Scholar

[27] E. Hroncová, J. Ladomerský, Model for Evaluation of Co-Combustion of Composted Sewage Sludge, in: 11th International Scientific conference MMA 2012 – Advanced production technologies, Novi Sad, Serbia, 2012, pp.343-345.

Google Scholar

[28] J. Ladomerský, E. Hroncová, A. Košíková, Transforming Waste to Fuel Followed by Energy Production in Context of Greenhouse Gas Emissions and Air Protection, in: International conference on chemical technology (ICCT), Praha, 2013, pp.1-8.

Google Scholar

[29] J. Hammond, S. Schackley, S. Sohi, P. Brownsort, Prospective life cycle carbon abatement for pyrolysis biochar systems (PBS) in the UK, Energy Policy, 39 (2011) 2646-2655.

DOI: 10.1016/j.enpol.2011.02.033

Google Scholar

[30] J. Ladomerský, E. Hroncová, B. Petrík, Design and implementation of a two-stage thermal reactor to minimize organic compounds emitted in the production of charcoal. Adidovce, 2004 (unpublished).

Google Scholar

[31] J.C. Adam, Improved and more environmentally friendly charcoal production system using a low-cost retort–kiln (Eco-charcoal). Renewable Energy 34 (2009) 1923–(1925).

DOI: 10.1016/j.renene.2008.12.009

Google Scholar

[32] E. Hroncová, J. Ladomerský, C. Adam, Inovative pyrolysis technique for biochar production with regard to reduced emissions of pollutants and greenhouse gases. Scientific Monograph. Zvolen: Technical University in Zvolen, Slovakia, (2013).

Google Scholar

[33] E. Hroncová, J. Ladomerský, C. Adam, The use of wood from degraded land for carbon sequestration, Drewno 56 (2013) 51-61.

Google Scholar

[34] M.M. Titirici, A. Thomas, M. Antonietti, Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem? New J. Chem. 31 (2007) 787-789.

DOI: 10.1039/b616045j

Google Scholar

[35] European Biochar Certificate-Guidelines for a Sustainable Production of Biochar, European Biochar Foundation (EBC), Arbaz, Switzerland, (2012).

Google Scholar

[36] J. Ladomerský, E. Hroncová, D. Samešová, K. Kočík, SK Patent 288, 265. (2015).

Google Scholar