The Effects of Heat Treatment on the Chemical Alterations of Oak Wood

Article Preview

Abstract:

Samples prepared from oak (Quercus robur L.) wood were exposed to heat treatment at temperatures of 160, 180, 200 and 220 oC for 3, 6, 9 and 12 hours. In both untreated and thermally treated wood there were determined extractives and lignin by National Renewable Energy Laboratory (NREL) procedures, cellulose by Seifert's method, holocellulose according to Wise, hemicelluloses as difference between holocellulose and cellulose. Monosaccharides were determined by high performance liquid chromatography (NREL).The results show that hemicelluloses are less stable at thermal treatment than cellulose. The amounts of lignin and extractives rose by increasing both temperature and time of the treatment while the amounts of hemicelluloses decreased. Thermal treatment also resulted in significant decreases of the yields of non-glucosic saccharides. Degradation of carbohydrates can cause the deterioration of mechanical properties of wood.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-49

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Srinivas, K.K. Pandey, Photodegradation of thermally modified wood, J. Photochem. Photobiol. B. 117 (2012) 140-145.

Google Scholar

[2] A. Burmester, Effect of heat-pressure-treatment of semi-dry wood on its dimensional stability, Holz Roh-Werkstoff. 31(6) (1973) 237-243.

Google Scholar

[3] E. Giebeler, Dimensional stabilisation of wood by moisture-heat-pressure-treatment, Holz Roh-Werkstoff. 41 (1983) 87-94.

Google Scholar

[4] O. Karlsson, E. Sidorova, T. Morén, Influence of heat transfering media on durability of thermally modified wood, Bioresources. 6(1) (2011) 356-372.

DOI: 10.15376/biores.6.1.356-372

Google Scholar

[5] V. Repellin, R. Guyonnet, Evaluation of heat-treated wood swelling by differential scanning calorimetry in relation to chemical composition, Holzforschung. 59 (2005) 28-34.

DOI: 10.1515/hf.2005.005

Google Scholar

[6] B. Esteves, J. Graca, H. Pereira, Extractive composition¸ and summative chemical analysis of thermally treated eucalypt wood, Holzforschung. 62 (2008) 344-351.

DOI: 10.1515/hf.2008.057

Google Scholar

[7] V.M. Tuong, J. Li, Changes caused by heat treatment in chemical composition and some physical properties of acacia hybrid sapwood, Holzforschung. 65 (2011) 67-72.

DOI: 10.1515/hf.2010.118

Google Scholar

[8] P. Bekhta, P. Niemz, Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood, Holzforschung. 57 (2003) 539-546.

DOI: 10.1515/hf.2003.080

Google Scholar

[9] D. Kocaefe, S. Poncsak, G. Dore, R. Younsi, Effect of thermal treatment on the chemical composition and mechanical properties of Birch and Aspen, Bioresources. 3 (2008) 517-537.

Google Scholar

[10] B.F.A. Bakar, S. Hiziroglu, P. Md Tahir, Properties of some thermally modified wood species, Materials and Design. 43 (2013) 348-355.

DOI: 10.1016/j.matdes.2012.06.054

Google Scholar

[11] E. Windeisen, C. Strobel, G. Wegener, Chemische Charakterisierung von thermisch belastetem Holz: Bestimmung des Acetylgruppengehalts und FTIR Spektroskopie, Holz Roh Werkstoff. 61(6) (2003) 471-472.

DOI: 10.1007/s00107-003-0416-3

Google Scholar

[12] E. Windeisen, G. Wegener, Chemical characterization and comparison of thermally treated beech and ash wood. Materials Science Forum. 599 (2009) 143-158.

DOI: 10.4028/www.scientific.net/msf.599.143

Google Scholar

[13] P.H. Mitchell, Irreversible property changes of small loblolly pine specimens heated in air, nitrogen, or oxygen, Wood and Fiber Science. 20 (3) (1988) 320-355.

Google Scholar

[14] M.J. Boonstra, J. van Acker, A. Pizzi, Anatomical and molecular reasons for property changes of wood after full-scale industrial heat-treatment, Proceedings Third European Conference on Wood Modification, 15-16th October Cardiff, UK (2007).

Google Scholar

[15] E. Windeisen, C. Strobel, G. Wegener, Chemical changes during the production of thermotreated beech wood, Wood Sci. Technol. 41(6) (2007) 523-536.

DOI: 10.1007/s00226-007-0146-5

Google Scholar

[16] R. Alen, R. Kotilainen, A. Zaman, Thermochemical behavior of Norway spruce (Picea abies) at 180–225°C, Wood. Sci. Technol. 36 (2002) 163-171.

DOI: 10.1007/s00226-001-0133-1

Google Scholar

[17] H. Sivonen, S.L. Maunu, F. Sundholm, S. Jamsa, P. Viitaniemi, Magnetic Resonance Studies of Thermally Modified Wood, Holzforschung. 56 (2002), 648–654.

DOI: 10.1515/hf.2002.098

Google Scholar

[18] B. Esteves, I. Domingos, H. Pereira, Pine wood modification by heat treatment in air, Bioresources. 3(1) (2008) 142-154.

DOI: 10.15376/biores.3.1.142-154

Google Scholar

[19] M. Poletto, A.J. Zattera, R.M. Santana, Thermal decomposition of wood: kinetics and degradation mechanisms, Biores. Technol. 126 (2012) 7-12.

DOI: 10.1016/j.biortech.2012.08.133

Google Scholar

[20] S. Yildiz, E.D. Gezer, U.C. Yildiz, Mechanical and chemical behaviour of spruce wood modified by  heat, Building and Environment. 41 (2006) 1762-1766.

DOI: 10.1016/j.buildenv.2005.07.017

Google Scholar

[21] A. Sluiter, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP). NREL/TP-510-42619. Golden, CO: National Renewable Energy Laboratory (2008).

DOI: 10.2172/937357

Google Scholar

[22] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP). NREL/TP-510-42618. Golden, CO: National Renewable Energy Laboratory (2011).

DOI: 10.2172/1021264

Google Scholar

[23] V.K. Seifert, Űber ein neues Verfahren zur Schnellbestimmung der Rein-Cellulose, Das Papier. (1956) 301-306.

Google Scholar

[24] L.E. Wise, M. Murphy, A.A. d'Addieco, Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses, PaperTrade J., 122(3) (1946) 35-43.

Google Scholar

[25] F. Kačík, D. Kačíková, T. Bubeníková, Spruce wood lignin alteration after infrared heating at different wood moistures, Cellulose Chem. Technol. 40(8) (2006) 643-648.

Google Scholar

[26] D. Kačíková, F. Kačík, D. Bubeníková, B. Košíková, Influence of fire on spruce wood lignin changes, Wood Research. 53(4) (2008) 95-103.

Google Scholar

[27] M. Nuopponen, T. Vuorinen, S. Jämsä, P. Viitaniemi, Thermal modifications in softwood studied by FT-IR and UV resonance Raman spectroscopies, J. Wood Chem. Technol. 24 (2004) 13-26.

DOI: 10.1081/wct-120035941

Google Scholar

[28] M. Nuopponen, T. Vuorinen, S. Jämsä, P. Viitaniemi, The effects of heat treatment on the behaviour of extractives in softwoodstudied by FTIR spectroscopic methods, Wood Sci. Technol. 37 (2003) 109-115.

DOI: 10.1007/s00226-003-0178-4

Google Scholar

[29] B.F. Tjeerdsma, M. Boonstra, A. Pizzi, P. Tekely, H. Militz, Characterisation of thermally modified wood: molecular reasons for wood performance improvement, Holz als Roh- und Werkstoff. 56 (1998) 149-153.

DOI: 10.1007/s001070050287

Google Scholar

[30] V. Kučerová, F. Kačík, R. Solár, J. Sivák, Comparison of various methods of cellulose determination after thermal loading of spruce wood, Acta Facultatis Xylologiae. 51(1) (2009) 5-10.

Google Scholar

[31] I. Čabalová, F. Kačík, D, Kačíková, M. Oravec, The influence of radiant heating on chemical changes of spruce wood, Acta Facultatis Xylologiae. 55(2) 59-6.

Google Scholar

[32] F. Kačík, T. Bubeníková, D. Kačíková, Spruce wood lignin alteration after infrared heating at different wood moistures, Cell. Chem. Technol. 40(8) (2007) 643-648.

Google Scholar

[33] T. Elder, Effect of process conditions on the yield of pyrolytic products from southern pine, Wood Fiber Sci. 16(2) (1984) 169-174.

Google Scholar

[34] B. Esteves, H. Pereira, Wood modification by heat treatment: a review, Bioresources, 4 (2009) 370-404.

Google Scholar