[1]
J. Karlsson, Alternative Reinforcement Approaches – Extended service life of exposed concrete structures, Master´s thesis, Chalmers University of Technology, Göteborg, Sweden (2014).
Google Scholar
[2]
ISSI Canada, Reinforcing Concrete Structures with Fibre Reinforced Polymers – Design manual. University of Manitoba, (2006).
Google Scholar
[3]
J. Zhou, X. Chen and S. Chen, Effect of Different Environments on Bond Strength of Glass Fiber-Reinforced Polymer and Steel Reinforcing Bars, Journal of Civil Engineering. 16(6), (2012) 994-1002.
DOI: 10.1007/s12205-012-1462-3
Google Scholar
[4]
H. Mazaheripour, J. A. O. Barros, J.M. Sena-Cruz, M. Pepe and E. Martinelli, Experimental study on bond performance of GFRP bars in self-compacting steel fiber reinforced concrete.
DOI: 10.1016/j.compstruct.2012.07.009
Google Scholar
[5]
M. R. Eshani, H. Saadatmanesh and S. Tao, Design recommendations for bond of GFRP rebars to concrete, Journal of Structural Engineering, Vol. 122, No. 3, (1996), 247-254.
DOI: 10.1061/(asce)0733-9445(1996)122:3(247)
Google Scholar
[6]
E. Gudonis, R. Kacianauskas, V. Gribniak, A. Weber, R. Jakubovskis, and G. Kaklauskas, Mechanical properties of the bond between GFRP reinforcing bars and concrete. Mechanics of Composite Materials, Vol. 50, No. 4, (2014).
DOI: 10.1007/s11029-014-9432-0
Google Scholar
[7]
A. Nanni, A. De Luca and H. J. Zadeh, Reinforced Concrete with FRP Bars – Mechanics and Design, Taylor & Francis Group, Boca Raton, (2014).
DOI: 10.1201/b16669
Google Scholar
[8]
L. Hussein, Analytical modelling of bond stress at steel-concrete interface due to corrosion, Dissertation thesis. Ryerson University, Toronto, (2011).
Google Scholar
[9]
Z. Achillides and K. Pilakoutas, Bond behaviour of fiber reinforced polymer bars under direct pull-out conditions, Journal of Composites for Construction. Vol. 8, No. 2 (2004) 173-181.
DOI: 10.1061/(asce)1090-0268(2004)8:2(173)
Google Scholar
[10]
H. V. S. GangaRao, N. Taly and P. V. Vijay, Reinforced Concrete Design with FRP Composites, Taylor & Francis Group, Boca Raton, (2007).
DOI: 10.1201/9781420020199
Google Scholar
[11]
L. M. Vint, Investigation of Bond Properties of Glass Fibre Reinforced Polymer Bars in Concrete under Direct Tension, Master´s thesis, Department of Civil Engineering, University of Toronto, (2012).
Google Scholar
[12]
M. Harajli and M. Abouniaj, Bond Performance of GFRP Bars in Tension: Experimental Evaluation and Assessment of ACI 440 Guidelines, Journal of Composites for Construction. Vol. 14, No. 6, (2010) 659-668.
DOI: 10.1061/(asce)cc.1943-5614.0000139
Google Scholar
[13]
R. Tepfers, Bond clause proposal for FRP-bars/rods in concrete based on CEB/FIP Model Code 90 with discussion of needed tests, Chalmers University of Technology, Göteborg, Sweden (2004).
DOI: 10.1680/stco.2006.7.2.47
Google Scholar
[14]
H-Y. Kim, Y. -H. Park, Y. -J. Y and Ch. -K. Moon, Durability of GFRP Composite Exposed to Various Environmental Conditions, KSCE Journal of Civil Engineering. Vol. 10, No. 4 (2006) 291-295.
DOI: 10.1007/bf02830783
Google Scholar
[15]
L.A. Bisby, V. R. K. Williams, V.R.K. Kodur, M.F. Green and E. Chowdhury, Fire Performance of FRP Systems for Infrastructure: A State-of-the-Art Report, National Research Council, Ottawa, (2005).
Google Scholar
[16]
A. Webber, FRP-reinforced Concrete Design (internal reinforcement) Properties, Safety. Available on http: /www. empa. ch/plugin/template/empa/*/55978.
Google Scholar
[17]
R. Mathieu and B. Brahim, Behaviour of GFRP Reinforcing Bars Subjected to Extreme Temperatures, Journal of Composites for Construction. Vol. 14, No. 4, (2010) 53-360.
Google Scholar
[18]
ACI 440. 1R-06, Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars, ACI, (2006).
Google Scholar
[19]
STN EN 1992-1-1, General rules and rules for buildings, (2005).
Google Scholar