[1]
K.L. Moore, A.F. Dalley, A.M. Agur, Clinically Oriented Anatomy, Macmillan, New York, (2013).
Google Scholar
[2]
R.W. Bucholz, A. Jones, Fractures of the Shaft of the Femur, J Bone Joint Surg Am, 73(1991) 1561-1566.
DOI: 10.2106/00004623-199173100-00015
Google Scholar
[3]
S.M. Perren, Evolution of the Internal Fixation of Long Bone Fractures. The Scientific Basis of Biological Internal Fixation: Choosing a New Balance between Stability and Biology, J Bone Joint Surg (Br), 84(2002) 1093-1110.
DOI: 10.1302/0301-620x.84b8.0841093
Google Scholar
[4]
S.E. Nork, Femural Shaft Fracture. Rockwood and Green's Fractures in Adults, Lippincott Williams & Wilkins, Philadelphia, 2006, pp.14-15.
Google Scholar
[5]
H. Endo, K. Asaumi, S. Mitani, T. Noda, H. Minagawa, The Minimally Invasive Plate Osteosynthesis (MIPO) Technique with a Locking Compression Plate for Femoral Lengthening, Acta Med Okayama, 62 (2008) 333-339.
DOI: 10.1055/b-0034-87680
Google Scholar
[6]
C.W. Oh, J. J. Kim, Y.S. Byun, J.K. Oh, J.W. Kim, Kim, Minimally Invasive Plate steosynthesis of Subtrochanteric Femur Fractures with a Locking Plate: A Prospective Series of 20 Fractures, Arch Orthop Traumsu, 129(2009) 1659-1665.
DOI: 10.1007/s00402-009-0815-y
Google Scholar
[7]
P. Strohm, K. Reising, T. Hammer, N. Suedkamp, M. Jaeger, H. Schmal, Humerus Shaft Fractures—Where Are We Today, Acta Chirurgiae Orthop et Traum Čechosl, 78(2011) 185-189.
DOI: 10.55095/achot2011/030
Google Scholar
[8]
G.W. Bagby, J.M. Janes, The effect of compression on the rate of fracture healing using a special plate, Am. J Surg. 95(1958) 761-769.
DOI: 10.1016/0002-9610(58)90625-1
Google Scholar
[9]
S.M. Perren, The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP), Scientific background, design and application, Injury. 22 (1991) 1-9.
DOI: 10.1016/0020-1383(91)90123-v
Google Scholar
[10]
R. Frigg, Locking Compression Plate (LCP): An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator (PC-Fix), Injury. 32 (2001) 63-71.
DOI: 10.1016/s0020-1383(01)00127-9
Google Scholar
[11]
D.L. Miller, T. Goswami, A Review of Locking Compression Plate Biomechanics and Their Advantages as Internal Fixators in Fracture Healing, Clin Biomech, 22(2007) 1049-1062.
DOI: 10.1016/j.clinbiomech.2007.08.004
Google Scholar
[12]
C. Kanchanomai, V. Phiphobmongkol, P. Muanjan, Fatigue Failure of an Orthopedic Implant—A Locking Compression Plate, Eng Fail Anal, 15(2008) 521-530.
DOI: 10.1016/j.engfailanal.2007.04.001
Google Scholar
[13]
K. Stoffel, U. Dieter, G. Stachowiak, A Gächter, M.S. Kuster, Biomechanical Testing of the LCP—How Can Stability in Locked Internal Fixators Be Controlled? Injury, 34(2003) 11-19.
DOI: 10.1016/j.injury.2003.09.021
Google Scholar
[14]
E. Gautier, C. Sommer, Guidelines for the Clinical Application of the LCP, Injury, 34(2003) 63-76.
DOI: 10.1016/j.injury.2003.09.026
Google Scholar
[15]
T. Ellis, C.A. Bourgeault, R.F. Kyle, Screw Position Affects Dynamic Compression Plate Strain in an in Vitro Fracture Model, J Orthop Trauma, 15(2001) 333-337.
DOI: 10.1097/00005131-200106000-00005
Google Scholar
[16]
J.R. Field, H. Törnkvist, T.C. Hearn, G. Sumner-Smith, The Influence of Screw Omission on Construction Stiffness and Bone Surface Strain in the Application of Bone Plates to Cadaveric Bone, Injury, 30(1999) 591-598.
DOI: 10.1016/s0020-1383(99)00158-8
Google Scholar
[17]
E.M. Lindvall, H.C. Sagi, Selective Screw Placement in Forearm Compression Plating: Results of 75 Consecutive Fractures Stabilized with 4 Cortices of Screw Fixation on Either Side of the Fracture, J Orthop Trauma, 20(2006) 157-162.
DOI: 10.1097/00005131-200603000-00001
Google Scholar
[18]
A.L. Freeman, P. Tornetta III, A. Schmidt, Bechtold, J., Ricci, W. and Fleming, M. How Much Do Locked Screws Add to the Fixation of Hybrid" Plate Constructs in Osteoporotic Bone, J Orthop Trauma 24(2010) 163-169.
DOI: 10.1097/bot.0b013e3181d35c29
Google Scholar
[19]
C.H. Lee, K.S. Shih, C.C. Hsu, Simulation-Based Particle Swarm Optimization and Mechanical Validation of Screw Position and Number for the Fixation Stability of a Femoral Locking Compression Plate, Med Eng & Phys, 36(2014) 57-64.
DOI: 10.1016/j.medengphy.2013.09.005
Google Scholar
[20]
S.H. Saidpour, Assessment of carbon fibre composite fracture fixation plate using finite element analysis, Ann Biomed Eng, 34(2006) 1157-1163.
DOI: 10.1007/s10439-006-9102-z
Google Scholar
[21]
M. Wagner, General principles for the clinical use of the LCP, Injury, 34(2003) 31-42.
Google Scholar
[22]
L. Claes, The mechanical and morphological properties of bone beneath internal fixation plates of differing rigidity, Orthop Res, 7 (1989) 170-177.
DOI: 10.1002/jor.1100070203
Google Scholar
[23]
G.W. Hastings, Is there an ideal biomaterial for use as an implant for fracture fixation? In: Hastings GW, editor, Biodegradable implants in fracture fixation. New York, 1993, p.19–34.
Google Scholar
[24]
M. Allgower, Perren, S. and Matter, P., A new plate for internal fixation - The dynamic compression plate (DCP), Injury, Br J Accid Surg, 2 (1970) 40-47.
DOI: 10.1016/s0020-1383(70)80111-5
Google Scholar
[25]
S. L-Y. Woo, B.R. Simon, Akeson, W.H., McCarty, M.P., An interdisciplinary approach to evaluate the effect of internal fixation plate on long bone remodeling, J Biomech 10 (1977) 87-95.
DOI: 10.1016/0021-9290(77)90072-0
Google Scholar
[26]
W. McCartney, B.J. MacDonald, M.S.J. Hashmi, Comparative performance of a flexible fixation implant to a rigid implant in static and repetitive incremental loading, J. Mat Proc Tech, 169 (2005) 476-484.
DOI: 10.1016/j.jmatprotec.2005.04.104
Google Scholar
[27]
V.K. Ganesh, K. Ramakrishna, D.N. Ghista, Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates, Biomed Eng Online, 21(2005) 35-42.
DOI: 10.1186/1475-925x-4-46
Google Scholar
[28]
P. Prendergast, Finite element models in tissue mechanics and orthopaedic implant design, Clin Biomech. 12(1997) 343-366.
DOI: 10.1016/s0268-0033(97)00018-1
Google Scholar
[29]
S. H. Baharnezhad, Farhangi, Influence of geometry and design parameters on flexural behavior of Dynamic Compression Plates (DCP): Experiment and Finite Element Analysis, J Mech Med Biol. 13 (2013) 112-118.
DOI: 10.1142/s0219519413500322
Google Scholar
[30]
P.J. Prendergast, Review paper: Finite element models in tissue mechanics and orthopaedic implant design, Clin Biomech, 12 (1997) 343-366.
DOI: 10.1016/s0268-0033(97)00018-1
Google Scholar
[31]
J. Cegonino, J.M. Garcia Aznar, M. Doblare, A comparative analysis of different treatments for distal femur fractures using the finite element method, Comp Meth Biomech Biomed Eng, 7 (2004) 245-256.
Google Scholar
[32]
M. Niinomi, Mechanical properties of biomedical titantium allous, Mater Sci and Eng A. 243(1998) 231-236.
Google Scholar
[33]
A.G. Au, V. James Raso, A.B. Liggins, A Amirfazli, Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements, J Biomech. 40 (2007) 1410-1416.
DOI: 10.1016/j.jbiomech.2006.05.020
Google Scholar
[34]
S. Veerabagu, K. Fujihara, Strain distribution analysis of braided composite bone plates, Comp Sci Tech. 63(2003) 427-435.
DOI: 10.1016/s0266-3538(02)00219-1
Google Scholar
[35]
S. Bresina, S. Tepic, Finite element analysis (FEA) for the Point contact fixator screw drive, plate design, overcuts, Injury. 26( 1995) 20-23.
DOI: 10.1016/0020-1383(95)96894-a
Google Scholar
[36]
K. Stoffel, U. Dieter, G. Stachowiak, Biomechanical testing of the LCP-how can stability in locked internal fixators be controlled? Injury. 34(2003) 11.
DOI: 10.1016/j.injury.2003.09.021
Google Scholar
[37]
G. Tang, S. L Liu., D.M. Wang, Finite Element Analysis in Femoral Fixation with TA3 Titanium Compressioll Plate, Adv Mater Res. 647(2013) 16-19.
DOI: 10.4028/www.scientific.net/amr.647.16
Google Scholar
[38]
W. Brekelmans, H.W. Poort, T. Slooff, A new method to analyse the mechanical behaviour of skeletal parts, Acta Orthop. 43(1972) 301-317.
DOI: 10.3109/17453677208998949
Google Scholar