Biomechanical Analysis of Femoral Fixation with a New Compression Plate Using Finite Element Method during Stair Climbing

Article Preview

Abstract:

LC-DCP (limited contact—dynamic compression plate) is the preferred plate in internal fixation. A new LC-DCP fixed with the femur was designed. Its strength was investigated with finite element method during stair climbing. Also, stress shielding and strength of femur fixed with TC4 (Ti6Al4V) compression plate was analyzed for different load mode during stair climbing. Simulated results demonstrated that compression plate’s design was reasonable, and it was not obvious to eliminate femoral stress shielding through adding preload on the screws. Also the analytical methods of stress shielding for femur fracture, established in the work, can be widely applied to stress shielding analysis of other bone fracture.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-305

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.L. Moore, A.F. Dalley, A.M. Agur, Clinically Oriented Anatomy, Macmillan, New York, (2013).

Google Scholar

[2] R.W. Bucholz, A. Jones, Fractures of the Shaft of the Femur, J Bone Joint Surg Am, 73(1991) 1561-1566.

DOI: 10.2106/00004623-199173100-00015

Google Scholar

[3] S.M. Perren, Evolution of the Internal Fixation of Long Bone Fractures. The Scientific Basis of Biological Internal Fixation: Choosing a New Balance between Stability and Biology, J Bone Joint Surg (Br), 84(2002) 1093-1110.

DOI: 10.1302/0301-620x.84b8.0841093

Google Scholar

[4] S.E. Nork, Femural Shaft Fracture. Rockwood and Green's Fractures in Adults, Lippincott Williams & Wilkins, Philadelphia, 2006, pp.14-15.

Google Scholar

[5] H. Endo, K. Asaumi, S. Mitani, T. Noda, H. Minagawa, The Minimally Invasive Plate Osteosynthesis (MIPO) Technique with a Locking Compression Plate for Femoral Lengthening, Acta Med Okayama, 62 (2008) 333-339.

DOI: 10.1055/b-0034-87680

Google Scholar

[6] C.W. Oh, J. J. Kim, Y.S. Byun, J.K. Oh, J.W. Kim, Kim, Minimally Invasive Plate steosynthesis of Subtrochanteric Femur Fractures with a Locking Plate: A Prospective Series of 20 Fractures, Arch Orthop Traumsu, 129(2009) 1659-1665.

DOI: 10.1007/s00402-009-0815-y

Google Scholar

[7] P. Strohm, K. Reising, T. Hammer, N. Suedkamp, M. Jaeger, H. Schmal, Humerus Shaft Fractures—Where Are We Today, Acta Chirurgiae Orthop et Traum Čechosl, 78(2011) 185-189.

DOI: 10.55095/achot2011/030

Google Scholar

[8] G.W. Bagby, J.M. Janes, The effect of compression on the rate of fracture healing using a special plate, Am. J Surg. 95(1958) 761-769.

DOI: 10.1016/0002-9610(58)90625-1

Google Scholar

[9] S.M. Perren, The concept of biological plating using the limited contact-dynamic compression plate (LC-DCP), Scientific background, design and application, Injury. 22 (1991) 1-9.

DOI: 10.1016/0020-1383(91)90123-v

Google Scholar

[10] R. Frigg, Locking Compression Plate (LCP): An osteosynthesis plate based on the Dynamic Compression Plate and the Point Contact Fixator (PC-Fix), Injury. 32 (2001) 63-71.

DOI: 10.1016/s0020-1383(01)00127-9

Google Scholar

[11] D.L. Miller, T. Goswami, A Review of Locking Compression Plate Biomechanics and Their Advantages as Internal Fixators in Fracture Healing, Clin Biomech, 22(2007) 1049-1062.

DOI: 10.1016/j.clinbiomech.2007.08.004

Google Scholar

[12] C. Kanchanomai, V. Phiphobmongkol, P. Muanjan, Fatigue Failure of an Orthopedic Implant—A Locking Compression Plate, Eng Fail Anal, 15(2008) 521-530.

DOI: 10.1016/j.engfailanal.2007.04.001

Google Scholar

[13] K. Stoffel, U. Dieter, G. Stachowiak, A Gächter, M.S. Kuster, Biomechanical Testing of the LCP—How Can Stability in Locked Internal Fixators Be Controlled? Injury, 34(2003) 11-19.

DOI: 10.1016/j.injury.2003.09.021

Google Scholar

[14] E. Gautier, C. Sommer, Guidelines for the Clinical Application of the LCP, Injury, 34(2003) 63-76.

DOI: 10.1016/j.injury.2003.09.026

Google Scholar

[15] T. Ellis, C.A. Bourgeault, R.F. Kyle, Screw Position Affects Dynamic Compression Plate Strain in an in Vitro Fracture Model, J Orthop Trauma, 15(2001) 333-337.

DOI: 10.1097/00005131-200106000-00005

Google Scholar

[16] J.R. Field, H. Törnkvist, T.C. Hearn, G. Sumner-Smith, The Influence of Screw Omission on Construction Stiffness and Bone Surface Strain in the Application of Bone Plates to Cadaveric Bone, Injury, 30(1999) 591-598.

DOI: 10.1016/s0020-1383(99)00158-8

Google Scholar

[17] E.M. Lindvall, H.C. Sagi, Selective Screw Placement in Forearm Compression Plating: Results of 75 Consecutive Fractures Stabilized with 4 Cortices of Screw Fixation on Either Side of the Fracture, J Orthop Trauma, 20(2006) 157-162.

DOI: 10.1097/00005131-200603000-00001

Google Scholar

[18] A.L. Freeman, P. Tornetta III, A. Schmidt, Bechtold, J., Ricci, W. and Fleming, M. How Much Do Locked Screws Add to the Fixation of Hybrid" Plate Constructs in Osteoporotic Bone, J Orthop Trauma 24(2010) 163-169.

DOI: 10.1097/bot.0b013e3181d35c29

Google Scholar

[19] C.H. Lee, K.S. Shih, C.C. Hsu, Simulation-Based Particle Swarm Optimization and Mechanical Validation of Screw Position and Number for the Fixation Stability of a Femoral Locking Compression Plate, Med Eng & Phys, 36(2014) 57-64.

DOI: 10.1016/j.medengphy.2013.09.005

Google Scholar

[20] S.H. Saidpour, Assessment of carbon fibre composite fracture fixation plate using finite element analysis, Ann Biomed Eng, 34(2006) 1157-1163.

DOI: 10.1007/s10439-006-9102-z

Google Scholar

[21] M. Wagner, General principles for the clinical use of the LCP, Injury, 34(2003) 31-42.

Google Scholar

[22] L. Claes, The mechanical and morphological properties of bone beneath internal fixation plates of differing rigidity, Orthop Res, 7 (1989) 170-177.

DOI: 10.1002/jor.1100070203

Google Scholar

[23] G.W. Hastings, Is there an ideal biomaterial for use as an implant for fracture fixation? In: Hastings GW, editor, Biodegradable implants in fracture fixation. New York, 1993, p.19–34.

Google Scholar

[24] M. Allgower, Perren, S. and Matter, P., A new plate for internal fixation - The dynamic compression plate (DCP), Injury, Br J Accid Surg, 2 (1970) 40-47.

DOI: 10.1016/s0020-1383(70)80111-5

Google Scholar

[25] S. L-Y. Woo, B.R. Simon, Akeson, W.H., McCarty, M.P., An interdisciplinary approach to evaluate the effect of internal fixation plate on long bone remodeling, J Biomech 10 (1977) 87-95.

DOI: 10.1016/0021-9290(77)90072-0

Google Scholar

[26] W. McCartney, B.J. MacDonald, M.S.J. Hashmi, Comparative performance of a flexible fixation implant to a rigid implant in static and repetitive incremental loading, J. Mat Proc Tech, 169 (2005) 476-484.

DOI: 10.1016/j.jmatprotec.2005.04.104

Google Scholar

[27] V.K. Ganesh, K. Ramakrishna, D.N. Ghista, Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates, Biomed Eng Online, 21(2005) 35-42.

DOI: 10.1186/1475-925x-4-46

Google Scholar

[28] P. Prendergast, Finite element models in tissue mechanics and orthopaedic implant design, Clin Biomech. 12(1997) 343-366.

DOI: 10.1016/s0268-0033(97)00018-1

Google Scholar

[29] S. H. Baharnezhad, Farhangi, Influence of geometry and design parameters on flexural behavior of Dynamic Compression Plates (DCP): Experiment and Finite Element Analysis, J Mech Med Biol. 13 (2013) 112-118.

DOI: 10.1142/s0219519413500322

Google Scholar

[30] P.J. Prendergast, Review paper: Finite element models in tissue mechanics and orthopaedic implant design, Clin Biomech, 12 (1997) 343-366.

DOI: 10.1016/s0268-0033(97)00018-1

Google Scholar

[31] J. Cegonino, J.M. Garcia Aznar, M. Doblare, A comparative analysis of different treatments for distal femur fractures using the finite element method, Comp Meth Biomech Biomed Eng, 7 (2004) 245-256.

Google Scholar

[32] M. Niinomi, Mechanical properties of biomedical titantium allous, Mater Sci and Eng A. 243(1998) 231-236.

Google Scholar

[33] A.G. Au, V. James Raso, A.B. Liggins, A Amirfazli, Contribution of loading conditions and material properties to stress shielding near the tibial component of total knee replacements, J Biomech. 40 (2007) 1410-1416.

DOI: 10.1016/j.jbiomech.2006.05.020

Google Scholar

[34] S. Veerabagu, K. Fujihara, Strain distribution analysis of braided composite bone plates, Comp Sci Tech. 63(2003) 427-435.

DOI: 10.1016/s0266-3538(02)00219-1

Google Scholar

[35] S. Bresina, S. Tepic, Finite element analysis (FEA) for the Point contact fixator screw drive, plate design, overcuts, Injury. 26( 1995) 20-23.

DOI: 10.1016/0020-1383(95)96894-a

Google Scholar

[36] K. Stoffel, U. Dieter, G. Stachowiak, Biomechanical testing of the LCP-how can stability in locked internal fixators be controlled? Injury. 34(2003) 11.

DOI: 10.1016/j.injury.2003.09.021

Google Scholar

[37] G. Tang, S. L Liu., D.M. Wang, Finite Element Analysis in Femoral Fixation with TA3 Titanium Compressioll Plate, Adv Mater Res. 647(2013) 16-19.

DOI: 10.4028/www.scientific.net/amr.647.16

Google Scholar

[38] W. Brekelmans, H.W. Poort, T. Slooff, A new method to analyse the mechanical behaviour of skeletal parts, Acta Orthop. 43(1972) 301-317.

DOI: 10.3109/17453677208998949

Google Scholar