The Development and Characterisation of Porous Clay - Precipitated Calcium Carbonate

Article Preview

Abstract:

Ceramic foams, a porous material with a gyroid structures, are becoming highly demanded for various applications such as heat insulation, bone implantation and filtration, because of their unique properties such as high specific surface area, high porosity and low heat transfer rate. In this study, the development of ceramic foam utilised white clay with a combination of precipitated calcium carbonate (PCC). The ceramic foam was successfully developed using this combination after the sample was sintered at 1250 °C for 2 hours holding time. The various compositions of PCC (10.0, 12.5, 15.0, 17.5, 20.0, 22.5 and 25.0 wt.%) affected the chemical composition and compressive strength of the ceramic foam. The chemical composition of ceramic foam was analysed by using X -ray fluorescence (XRF) and the result indicated that the PCC was successfully transformed into calcium oxide (CaO) after the sintering process. The mineralogical composition of the ceramic foam was evaluated using X-ray diffraction (XRD) and has shown the presence of mullite (3Al2O3.2SiO2), gehlenite (Ca2Al2SiO7) and anorthite (2CaAl2Si2O8) after the sintering process. The scanning electron microscope (SEM) analysis showed that the presence of porosity on the strut of the ceramic foam. Meanwhile, the compressive strength of the ceramic foam increased from 0.03 to 1.31 MPa, which is directly proportional to the increased amount of PCC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-194

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Costacurta, L. Biasetto, E. Pippel, J. Woltersdorf, P. Colombo, Hierarchical porosity components by infiltration of a ceramic foam, J. Am. Ceram. Soc. 90 (2007) 2172-2177.

DOI: 10.1111/j.1551-2916.2007.01658.x

Google Scholar

[2] X. Pu, X. Liu, F. Qiu, L. Huang, Novel method to optimize the structure of reticulated porous ceramics, J. Am. Ceram. Soc. 87 (2004) 1392-1394.

DOI: 10.1111/j.1151-2916.2004.tb07745.x

Google Scholar

[3] T. M. Seck, F. P. Melchels, J. Feijen, D. W. Grijpma, Designed biodegradable hydrogel structures prepared by stereo lithography using poly (ethylene glycol)/poly (d, l-lactide)-based resins, J. Controlled Release 148 (2010) 34-41.

DOI: 10.1016/j.jconrel.2010.07.111

Google Scholar

[4] D. D. Alemayehu, S. K. Singh, D. A. Tessema, Assessment of the adsorption capacities of fired clay soils from Jimma (Ethiopia) for the removal of Cr (VI) from aqueous solution, Universal J. Environ. Res. Technol. 2 (2012).

Google Scholar

[5] E. Escalera, R. Tegman, M. L. Antti, M. Odén, High temperature phase evolution of Bolivian kaolinitic-illitic clays heated to 1250°C, Appl. Clay Sci. 101 (2014) 100-105.

DOI: 10.1016/j.clay.2014.07.024

Google Scholar

[6] M. De Beer, The production of precipitated calcium carbonate from industrial gypsum wastes, Doctoral dissertation, University of North West, (2014).

Google Scholar

[7] G. D. Elzinga, H. T. J. Reijers, P. D. Cobden, W. G. Haije, R. W. Brink, CaO sorbent stabilisation for CO2 capture applications, Energy Procedia 4 (2011) 844-851.

DOI: 10.1016/j.egypro.2011.01.128

Google Scholar

[8] M. Mohamed, N. A. Rashidi, S. Yusup, L. K. Teong, U. Rashid, R. M. Ali, Effects of experimental variables on conversion of cockle shell to calcium oxide using thermal gravimetric analysis, J. Cleaner Prod. 37 (2012) 394-397.

DOI: 10.1016/j.jclepro.2012.07.050

Google Scholar

[9] K. Ewelina, J. Ma, Sintering behaviour of kaolin with calcite, Procedia Eng. 57 (2013) 572-582.

Google Scholar

[10] T. Sime, Gehlenite and anorthite crystallisation from kaolinite and calcite mix, Ceram. Int. 29 (2003) 377-383.

DOI: 10.1016/s0272-8842(02)00148-7

Google Scholar

[11] Y. Yasmin, M. N. Mazlee, W. H. Chan, J. B. Shamsul, R. Azmi, Porous solid carbon dioxide adsorbent using cost effective materials: A review, Appl. Mech. Mater. 786 (2015) 84–88.

DOI: 10.4028/www.scientific.net/amm.786.84

Google Scholar

[12] A. Kennedy, Porous metals and metal foams made from powders, in: Powder Metallurgy, K. Kondoh (Ed. ), Intech, 2012, pp.31-46.

DOI: 10.5772/33060

Google Scholar

[13] L. Simão, R. F. Caldato, M. D. M. Innocentini, O. R. K. Montedo, Permeability of porous ceramic based on calcium carbonate as pore generating agent, Ceram. Int. 41 (2015) 4782-4788.

DOI: 10.1016/j.ceramint.2014.12.031

Google Scholar

[14] S. Sangsuk, S. Khunthon, S. Saenapitak, S. Nilpairach, Effect of limestone dust on the properties of Thai pottery sintering at low temperature, J. Met. Mater. Min. 18 (2008) 1-7.

Google Scholar

[15] A. Rashid, S. Rizal, A. Kamal, M. Zukifly, Z. Arifin, The effect of sago as binder in the fabrication of alumina foam through the polymeric sponge replication technique, J. Eur. Ceram. Soc. 35 (2015) 1905-(1914).

DOI: 10.1016/j.jeurceramsoc.2014.12.005

Google Scholar