Effects of Surface Properties of Montmorillonite for their Cytocompatibility

Article Preview

Abstract:

We modified the surface of organically modified montmorillonite (OMMT) with the carboxyl group using the silane coupling reaction and assessed its characteristics and cytocompatibility. Scanning electron microscope observations show that while the size and morphology of the obtained OMMT (OMMT-COOH) was unchanged, the surface of OMMT-COOH was coarser than that of OMMT. Fourier transform infrared spectra showed characteristic strong peaks at 1210 and 1630 cm1, corresponding to the peaks of the carboxyl group. X-ray diffraction analysis showed that the diffraction peak of OMMT-COOH corresponding to the (001) reflection was located at higher a 2θ value than that of OMMT. Results of the proliferation ratio and cell viability measurements indicated that the OMMT-COOH cytocompatibility is higher than that of OMMT. Based on these results, we conclude that cytocompatibility of montmorillonite would be improved by tuning the properties of the surface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-84

Citation:

Online since:

May 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Fukushima, D. Tabuani, M. Arena, M. Gennari, G. Camino, Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites, React Funct Polym. 73 (2013) 540-549.

DOI: 10.1016/j.reactfunctpolym.2013.01.003

Google Scholar

[2] H. Chen, J. Chen, J. Chen, J. Yang, T. Huang, N. Zhang, Y. Wang, Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(L-lactide), Polym Degrad Stab. 97 (2012) 2273-2283.

DOI: 10.1016/j.polymdegradstab.2012.07.037

Google Scholar

[3] K. Chrissafis, E. Pavlidou, K. M. Paraskevopoulos, T. Beslikas, N. Nianias, D. Bikiaris, Enhancing mechanical and thermal properties of PLLA ligaments with fumed silica nanoparticles and montmorillonite, J Therm Anal Calorim. 105 (2011) 313-323.

DOI: 10.1007/s10973-010-1168-z

Google Scholar

[4] E. Picard, E. Espuche, R. Fulchiron, Effect of an organo-modified montmorillonite on PLA crystallization and gas barrier properties, Appl Clay Sci. 53 (2011) 58-65.

DOI: 10.1016/j.clay.2011.04.023

Google Scholar

[5] K. Nakanishi, S. Yamagata, T. Akasaka, S. Abe, Y. Yoshida, J. Iida, Preparation of a poly(lactic acid)/montmorillonite nanocomposite, Key Eng Mat. 631 (2015) 151-155.

DOI: 10.4028/www.scientific.net/kem.631.151

Google Scholar

[6] K. Nakanishi, S. yamagata, J. Iida, Characterization of poly(L-lactic acid)/organically modified montmorilonite nanocomposites synthesized by a solution intercalation method, Hokkaido Journal of Dental Science (accepted).

Google Scholar

[7] J. Houtman, S. Maisanaba, M. Puerto, D. Gutiérrez-Praena, M. Jordá, S. Aucejo, A. Jos, Toxicity assessment of organomodified clays used in food contact materials on human target cell lines, Appl Clay Sci. 90 (2014) 150-158.

DOI: 10.1016/j.clay.2014.01.009

Google Scholar

[8] S. Maisanaba, D. Gutiérrez-Praena, S. Pichardo, F. Javier Moreno, M. Jordá, A. M. Cameán, S. Aucejo, Á. Jos, Toxic effects of a modified montmorillonite clay on the human intestinal cell line Caco-2, J. Appl. Toxicol. 34 (2014) 714-725.

DOI: 10.1002/jat.2945

Google Scholar

[9] A. Kumar Sharma, B. Schmidt, H. Frandsen, N. Raun Jacobsen, E. Husfeldt Larsen, M. Binderup, Genotoxicity of unmodified and organo-modified montmorillonite, Mutat Res 700 (2010) 18-25.

DOI: 10.1016/j.mrgentox.2010.04.021

Google Scholar

[10] Z. Liu, X. Dong, L. Song, H. Zhang, L. Liu, D. Zhu, C. Song, X. Leng, Carboxylation of multwalled carbon nanotube enhanced its biocompatibility with L02 cells through decreased activation of mitochondrial apoptotic pathway, J Biomed Mater Res A. 102A (2014).

DOI: 10.1002/jbm.a.34729

Google Scholar

[11] S. Abe, N. Iwadera, T. Narushima, Y. Uchida, M. Uo, T. Akasaka, Y. Yawaka, F. Watari, T. Ynezawa, Comparison of biodistribution and biocompatibility of gelatin-coated copper nanoparticles and naked copper oxide nanoparticles, e-J Surf Sci Nanotech. 10 (2012).

DOI: 10.1380/ejssnt.2012.33

Google Scholar

[12] L. Yang, L. Li, Q. Tu, L. Ren, Y. Zhang, X. Wang, Z. Zhang, W. Liu, L. Xin, J. Wang, Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility, Anal Chem. 82 (2010).

DOI: 10.1021/ac100544x

Google Scholar

[13] S. Tsuchiya, S. Abe, T. Kiba, A. Murayama, Y. Yoshida, J. Iida, Size, Morphology and Surface Property Effects of Ceramics Nanoparticles on their biocompatibility, submitted to Journal of Nanoscience Nanotechnology, (2015).

Google Scholar

[14] M. Mutoh, S. Abe, K. Nakayama, K. Nakanishi, Y. Yoshida J. Iida, T. Takada, Preparation of surface-modified fullerene C60 nanoclusters for bioapplications, submitted to Nano Convergence, (2015).

Google Scholar