Polysilane as SiC Precursor: Preparation, Catalytic Cure and Pyrolysis

Article Preview

Abstract:

Liquid polysilane (methyl-terminated vinyl-containing oligomethylsilane, PSI) was prepared by lithium condensation and used as SiC precursor. With the increase of catalyst Ni(acac)2, the thermal cure exotherm shifted to lower temperatures gradually, and the ceramic yield was gradually increased. The crystallinity was promoted by catalyst addition, meanwhile the elements in the pyrolyzed β-SiC were distributed uniformly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

148-152

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Riedel, G. Mera, R. Hauser, et al, Journal of the Ceramic Society of Japan, , 114(2006) 425-444.

Google Scholar

[2] X. Wang, J. Wang, H. Wang, International Journal of Adhesion and Adhesives, 35(2012) 17-20.

Google Scholar

[3] X. Yang, L. Wei, W. Song, et al, Ceramics International, 38(2012) 2893-2897.

Google Scholar

[4] S.P. Lee, K.S. Cho, H.U. Lee, et al, IOP Conference Series: Materials Science and Engineering. IOP Publishing, 18(2011) 162017.

Google Scholar

[5] S. Zhao, X. Zhou, J. Yu, et al, Fusion Engineering and Design, 89(2014) 131-136.

Google Scholar

[6] S. Zhao, X. Zhou, J. Yu, et al. Materials Science and Engineering: A, 559(2013) 808-811.

Google Scholar

[7] T. Taguchi, Y. Hasegawa, S. Shamoto. Journal of Nuclear Materials, 417(2011) 348-352.

Google Scholar

[8] Y. Mu, W. Zhou, F. Luo, et al. Journal of Materials Science, 49(2014) 1527-1536.

Google Scholar

[9] S. Yajima, Y. Hasegawa, K. Okamura, T. Matsuzawa. Nature, 273(1978) 525-527.

Google Scholar

[10] R.M. Laine, F. Babonneau. Chemistry of materials, 5(1993) 260-279.

Google Scholar

[11] S. Yajima, M. Omori, J. Hayashi, et al, Chemistry Letters, (1976) 551-554.

Google Scholar

[12] Z. Xie, J. Niu, Z. Chen. Journal of Applied Polymer Science, 128(2013) 1834-1841.

Google Scholar

[13] M.H. Chen, S.L. Chen, H.F. Hu, et al, Aerospace Materials & Technology, 33(2003) 49-52.

Google Scholar

[14] F. Cao, X. Li,D. Kim. Journal of organometallic chemistry, 688(2003) 125-131.

Google Scholar

[15] J.G. Kho, D. Mid, D.R. Kim. Mater Sci, 19(2000) 303-305.

Google Scholar

[16] H. Hu, Z. Chen, J. Xiao, et al. Journal of materials science letters, 18(1999) 1271-1272.

Google Scholar

[17] Z. Yu, L. Yang, H. Min, et al. Journal of the European Ceramic Society, 35(2015) 851-858.

Google Scholar

[18] M. Wang, L. Yang, C. Yu, et al. Ceramics International, 38(2012) 2449-2454.

Google Scholar

[19] S.N. MacMillan, W.H. Harman, J.C. Peters. Chemical Science, 5(2014) 590-597.

Google Scholar

[20] H. Hu, Z. Chen, J. Xiao, et al, Journal of materials science letters, 18(1999) 1271-1272.

Google Scholar

[21] H. Zhang, Y. Liu, Y.J. Yan, et al, Key Engineering Materials, 602(2014) 274-278.

Google Scholar

[22] C. Zhou, L. Yang, H. Geng, et al, Ceramics International, 38(2012) 6815-6822.

Google Scholar

[23] M.P. Zheng, Y.D. Hou, H.Y. Ge, et al, Journal of the European Ceramic Society, 33(2013) 1447-1456.

Google Scholar