Preparation and Characteristics of Nanocrystalline Yttria by Microwave-Induced Solution Combustion Method

Article Preview

Abstract:

Nanocrystalline yttria powders were successfully synthesized by microwave-induced solution combustion method using a binary yttrium salt system with yttrium nitrate as oxidant and yttrium acetate as reductant. The process involved the redox reaction between the two yttrium salt under the heat generated by absorbing microwaves. The prepared powders were characterized by X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) to study the structure and powder morphology. The prepared powders were indicated to exhibit single-phase cubic crystalline yttria structure. The oxidant/reductant ratios and the calcination temperatures had an effect upon the particle size and powder morphology. The size of the crystallites varied in the range of 16 nm~27 nm with different reductant proportion. The powders were observed to show loosely agglomerated fractals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-22

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. A. Lefever, J. Matsko, Transparent yttrium oxide ceramics, Mater. Res. Bull. 2 (1967), 865-869.

DOI: 10.1016/0025-5408(67)90096-7

Google Scholar

[2] Y. Nigara, Measurement of the optical constants of yttrium oxide, Jpn. J. Appl. Phys. 7(4) (1968), 404.

DOI: 10.1143/jjap.7.404

Google Scholar

[3] A. L. Micheli, D. F. Dungan, J. V. Mantese, High-density yttria for practical ceramic applications, J. Am. Ceram. Soc. 75(3) (1992), 709-711.

DOI: 10.1111/j.1151-2916.1992.tb07863.x

Google Scholar

[4] S. Balakrishnan, K. Ananthasivan, K. C. H. Kumar, Studies on the synthesis and sintering of nanocrystalline yttria, Ceram. Int. 40(5) (2014), 6777-6785.

DOI: 10.1016/j.ceramint.2013.12.001

Google Scholar

[5] X. R. Hou, S. M. Zhou, Y. K. Li, et al., Luminescent properties of nano-sized Y2O3: Eu fabricated by co-precipitation method, J. Alloys Compd., 494(1) (2010), 382-385.

DOI: 10.1016/j.jallcom.2010.01.054

Google Scholar

[6] J. Dhanaraj, R. Jagannathan, T. R. N. Kutty, et al., Photoluminescence characteristics of Y2O3: Eu3+ nanophosphors prepared using sol-gel thermolysis, J. Phys. Chem. B. 105(45) (2001), 11098-11105.

DOI: 10.1021/jp0119330

Google Scholar

[7] L. Mančić, V. Lojpur, B. A. Marinković, et al., Hydrothermal synthesis of nanostructured Y2O3 and (Y0. 75Gd0. 25)2O3 based phosphors, Opt. Mater. 35(10) (2013), 1817-1823.

DOI: 10.1016/j.optmat.2013.03.006

Google Scholar

[8] S. Ekambaram, K. C. Patil, Combustion synthesis of yttria, J. Mater. Chem. 5(6) (1995), 905-908.

Google Scholar

[9] R. V. Mangalaraja, J. Mouzon, P. Hedström, et al. Microwave assisted combustion synthesis of nanocrystalline yttria and its powder characteristics, Powder Technol. 191(3) (2009), 309-314.

DOI: 10.1016/j.powtec.2008.10.019

Google Scholar

[10] M. F. Carolan, J. N. Michaels, Chemical vapor deposition of yttria stabilized zirconia on porous supports, Solid State Ionics. 25(2) (1987), 207-216.

DOI: 10.1016/0167-2738(87)90122-6

Google Scholar

[11] Y. C. Kang, H. S. Roh, S. B. Park, Preparation of Y2O3: Eu phosphor particles of filled morphology at high precursor concentrations by spray pyrolysis, Adv. Mater. 12(6) (2000), 451-453.

DOI: 10.1002/(sici)1521-4095(200003)12:6<451::aid-adma451>3.0.co;2-s

Google Scholar

[12] M. Rekha, K. Laishram, R. K. Gupta, et al., Energy-efficient green synthesis of Nd: Y2O3 nanopowder by microwave gel combustion, J. Mater. Sci. 44(16) (2009), 4252-4257.

DOI: 10.1007/s10853-009-3615-4

Google Scholar

[13] A. M. Khachatourian, F. Golestani-Fard, H. Sarpoolaky, et al., Microwave assisted synthesis of monodispersed Y2O3 and Y2O3: Eu3+ particles, Ceram. Int. 41(2) (2015), 2006-(2014).

DOI: 10.1016/j.ceramint.2014.09.105

Google Scholar

[14] B. D. Culity, S. R. Stock, Elements of X-ray Diffraction, Reading: Addition-Wesley, (1978).

Google Scholar