[1]
M Schwartz, Encyclopedia of Materials, Parts and Finishes, Second Edition, 2nd ed. Florida, United States of America: CRC Press, (2002).
Google Scholar
[2]
Q. Fan, H. Chai, and Z. Jin, Dissolution–precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide, Intermetallics, 9 (2001) 609–619.
DOI: 10.1016/s0966-9795(01)00046-2
Google Scholar
[3]
Z. Yu, D. D. Hass, and H. N. G. Wadley, NiAl bond coats made by a directed vapor deposition approach, Mater Sci Eng: A, 394 (2005) 43-52.
DOI: 10.1016/j.msea.2004.11.017
Google Scholar
[4]
N. Afandi, A. Manap, H. Misran, and S. Othman, Effect of Calcination Temperatures on Properties of NiAl prepared by Gel Combustion Synthesis, in 2nd National Graduate Conference (2013).
Google Scholar
[5]
I. -H. Shin et al., Estimation of spallation life of thermal barrier coating of gas turbine blade by thermal fatigue test, Surf Coat Tech, 205 (2011) S157–S160.
DOI: 10.1016/j.surfcoat.2011.02.068
Google Scholar
[6]
A. Manap, D. Seo, K. Ogawa, Characterization of Thermally Grown Oxide on Cold Sprayed CoNiCrAlY Bond Coat in Thermal Barrier Coating, Mater Sci Forum, 696 (2011) 324–329.
DOI: 10.4028/www.scientific.net/msf.696.324
Google Scholar
[7]
O. Ozdemir, S. Zeytin, and C. Bindal, Tribological properties of NiAl produced by pressure-assisted combustion synthesis, Wear, 265 (2008) 979–985.
DOI: 10.1016/j.wear.2008.02.005
Google Scholar
[8]
V. Udhayabanu, K. R. Ravi, V. Vinod, B. S. Murty, Synthesis of in-situ NiAl–Al2O3 nanocomposite by reactive milling and subsequent heat treatment, Intermetallics, 18 (2010) 353–358.
DOI: 10.1016/j.intermet.2009.08.006
Google Scholar
[9]
G. H. Xu, Z. Lu, K. F. Zhang, The oxidation resistance of submicron-grained NiAl–Al2O3 composite fabricated by pulse current auxiliary sintering, Intermetallics, 31 (2012) 99–104.
DOI: 10.1016/j.intermet.2012.06.007
Google Scholar
[10]
G. Xu, G. Wang, K. Zhang, Effect of rare earth Y on oxidation behavior of NiAl-Al2O3, Transa Nonferrous Met Soc China, 21 (2011) s362-s368.
DOI: 10.1016/s1003-6326(11)61607-5
Google Scholar
[11]
P. Richer, M. Yandouzi, L. Beauvais, B. Jodoin, Oxidation behaviour of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying, Surf Coat Tech, 204 (2010) 3962–3974.
DOI: 10.1016/j.surfcoat.2010.03.043
Google Scholar
[12]
D.K. Das, V. Singh, and S.V. Joshi, The Cyclic Oxidation Performance of Aluminide and Pt-Aluminide Coatings on Cast Ni-Based Superalloy CM-247, TMS, 1 (2000).
Google Scholar
[13]
A. Manap, A. Nakano, K. Ogawa, The Protectiveness of Thermally Grown Oxides on Cold Sprayed CoNiCrAlY Bond Coat in Thermal Barrier Coating, J Therm Spray Tech, 21 (2012) 586-596.
DOI: 10.1007/s11666-012-9749-y
Google Scholar
[14]
M. Daroonparvar, M. Yajid, N. Yusof, and M. Hussain, Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings, J Nanomaterial, 10 (2013) 1-10.
DOI: 10.1155/2013/520104
Google Scholar