Microstructural Dependence of Magnetization and Magnetostriction in Fe-20at.%Ga

Article Preview

Abstract:

A combination study of magnetic and magnetostrictive properties in directionally cast and differently heat-treated Fe-20Ga(at.%) samples has been carried out at room temperature. Slow cooling leads to an increase in the occupation of [200] easy magnetic axes; however, a structural ordering of Ga atoms into a metastable D03 phase decreasesthe saturation magnetostriction (λs) and the saturation magnetization (Ms), and increases coercivity (Hc).Our results confirm the contribution of D03 ordering to magnetic and magnetostrictive properties due to their pinning effects against magnetic domain wall motions. As compared to slow cooling, water quenching suppresses the formation of metastable (D03) or stable (L12) ordered phases and preserves the A2 single phase structure down to room temperature, leading to enhanced magnetostriction and magnetization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

100-105

Citation:

Online since:

August 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. A. Kellog, A. B. Flatau, A. E. Clark, M. Wun-Fogle, T. A. Lograsso (2002) J. Appl. Phys. 91: 7821-7823.

Google Scholar

[2] I. S. Golovin, J. Cifre (2014) J. Alloys Comp. 584: 322-326.

Google Scholar

[3] A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, J.R. Cullen (2001) IEEE Trans. Magn. 37: 2678- 2680.

DOI: 10.1109/20.951272

Google Scholar

[4] O. Ikeda, R. Kainuma ,I. Ohnuma ,K. Fukamichi , K. Ishida (2002) J. Alloys Comp. 347: 208-205.

Google Scholar

[5] Q. Xing, Y. Du, R. J. McQueeney, T. A. Lograsso (2008) Acta Mater. 56: 4536-4546.

Google Scholar

[6] T.A. Lograsso, A.R. Ross, D.L. Schlagel, A.E. Clark, M. Wun-Fogle (2003) J. Alloys Comp. 350: 95-101.

DOI: 10.1016/s0925-8388(02)00933-7

Google Scholar

[7] T. A. Lograsso, E. M. Summers (2006) Mater. Sci. Eng. A 416: 240-245.

Google Scholar

[8] N. Srisukhumbowornchai, S. Guruswamy (2001) J. Appl. Phys. 90: 5680-5688.

Google Scholar

[9] J. J. Zhang, T. Ma, and M. Yan (2010) Physica B 405: 3129-3134.

Google Scholar

[10] S. Datta, M. Hung, J. Raim, T. A. Lofrasso, A. B. Flatau (2006) Mater. Sci. Eng. A 435: 221-227.

Google Scholar

[11] R. Wu (2002) J. Appl. Phys. 91: 7358-7360.

Google Scholar

[12] S Bhattacharyya, J R Jinschek, A Khachaturyan, H Cao, J F Li, D Viehland (2008) Physical Review B. 77 104107.

Google Scholar

[13] T V Jayaraman, R P Corson, S Guruswamy (2007) J. Appl. Phys. 102 053905.

Google Scholar

[14] C. LI, J. LIU, and C. JIANG(2012) Metall. Mater. Trans. A 43: 4514-4520.

Google Scholar

[15] J. Boisse, H. Zapolsky, A.G. Khachaturyan (2011) Acta Mater. 59: 2656-2668.

Google Scholar

[16] G. Engdahl (2000), Handbook of Giant Magnetostrictive Materials, Academic Press, London.

Google Scholar

[17] N. Kawamiya, K. Adachi, Y. Nakamura (2072) J. Phys. Soc. Jpn., 33: 1318-1327.

Google Scholar

[18] R.C. O'Handley (2000), Modern Magnetic Materials 1st edn. Wiley, New York.

Google Scholar

[20] A. Hubert, R. Schafer (2009) Magnetic Domains: The Analysis of Magnetic Microstructures 3rd edn. Springer, Berlin.

Google Scholar

[20] I.S. Golovin, Z. Belamri, D. Hamana (2011) J. Alloys Comp. 509: 8165-8170.

Google Scholar

[21] M. Boufenghour, A. Hayoune, D. Hamana (2004) J. Mater. Sci. 39: 1207-1212.

Google Scholar