A Study of Mechanical, Oil Resistance, and Low Temperature Resistance of NBR Vulcanizates

Article Preview

Abstract:

In this study, mechanical properties, oil resistance of Nitrile Butadiene Rubber (NBR) as material of an automotive were investigated at low temperature conditions. In order to find the optimum formulation used various grades of NBR with different contents of Acrylonitrile (ACN) such as NT1846F, DN407, B7150, B6240 and N215SL. The mechanical properties, oil and low temperature resistance of NBR were measured using moving die rheometer, durometer, universal testing machine, differential scanning calorimetry, and Gehman tester. The hardness was increased with an increased ACN contents. The low temperature resistance, and degree of swelling were increased that decreased ACN contents have lower Tg, lower value of Gehaman test.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-171

Citation:

Online since:

August 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. L. Bryant, in: C. M. Blow, and C. Hepburn (Eds. ), Rubber Technology and Manufacture 2nd, Butterworths, London, 1982, Chapter 4.

Google Scholar

[2] J. A. Brydson, Rubbery Materials and Their Compounds, Elsevier Applied Science, Amsterdam, 1988, 187-205.

Google Scholar

[3] D. C. Blackley, Synthetic Rubber : Their Chemistry and Technology, Applied Science Publishers, Iblrking, 1983, 126-141.

Google Scholar

[4] L. Evans, and E. G. partridge, Rubber Age. 94 (1963) 272.

Google Scholar

[5] Donald A. Seil, and Fred R. Wolf, Nitrile and Polyacylic Rubbers, in: Morton, Maurice (Eds. ), Rubber Technology 3nd, Van Nostrand Reinhold Company Inc., New York, 1987, Chapter 11.

Google Scholar

[6] A. F. Blamchard, in: W. J. S. Naunton (Ed. ), The Applied Science of Rubber, Edward Arnold Ltd., London, 1961, 414-474.

Google Scholar

[7] H. Alter, J. Appl. Polym. Sci., 9 (1965) 234-240.

Google Scholar

[8] G. Guth, J. Appl. Phys., 16 (1945) 20.

Google Scholar

[9] Y. Santo, and J. Farukawa, Rub. Chem. Technol., 35 (1962) 857.

Google Scholar

[10] G. Kraus, in: F. R. Eirch (Ed. ), Science and Technology of Rubber, Academic Press., New York, 1978, 339.

Google Scholar

[11] A. Voet, J. Polym. Sci., 15 (1980) 327.

Google Scholar

[12] F. Bueche, in: G. Krasus, (Ed. ), Reinforcement of Elastomers, Interscience Publishers, John Wiley and Sons., New York.

Google Scholar

[13] A. E. Oberth, Rub. Chem. Technol., 40 (1967) 1337-1363.

Google Scholar

[14] S-H. Zhu, and C-M. Chan, Polym. Eng. Sci., 39 (1990) (1998).

Google Scholar

[15] C. Sirisinha, S. Limcharoen, and J. Thunyarittikorn, J. Appl. Polym. Sci., 85 (2001) 1232.

Google Scholar

[16] S. Saha, Eur. Polym. J., 37 (2001) 399.

Google Scholar

[17] J. Clake, B. Clarke, and P. K. Freakley, Rubber Chem Technol., 74 (2000) 1.

Google Scholar

[18] S. J. Ahn, K. H. Lee, B. K. Kim, and H. M. jeong, Appl. Poly. Sci., 78 (2000) 1861.

Google Scholar

[19] E. H. Tan, S. Wolff, M. Haddeman, H. P. Grewatta, M. J. Wang, Filler-elastomer interactions. Part IX. Perfomance of silicas in polar elastomers, Rubber Chem. Technol., 37 (1992) 594.

DOI: 10.5254/1.3538332

Google Scholar

[20] B. karaagac, M. Inal V. Deniz, Mater. Des., 30 (2009) 1685.

Google Scholar

[21] J. S. Dick, Rubber technology: compounding and testing for performance, Munich: Hanser publisher, (2001).

Google Scholar

[22] M. Maurice, Rubber technology third edition. Netherland: Kluwer Academic Publishers, (1999).

Google Scholar

[23] S. S. Choi, and J. C. Kim, Lifetime prediction and thermal aging behaviors of SBR and NBR composites using crosslink density changes, J Ind Eng Chem., 18 (2012) 1166-1170.

DOI: 10.1016/j.jiec.2012.01.011

Google Scholar

[24] Nicholas P. Cheremisinoff, in: Susmita Bhattacharjee, Anil K. Bhowmick, and Bhola Nath Avasthi, Elastomer Technology Handbook, Morhanville, New Jersey, 1993, 520-524.

Google Scholar

[25] J. Hanley, N. Murphy, H. Ali, and S. Jerrams, The Effect of Oil Swelling on the Fatigue Life of Elastomers subjected to Cyclic Bubble Inflation, 11th International Seminars on Elastomers, Sept, Freiburg, Germany, 2007, 23-27.

DOI: 10.5254/1.3548224

Google Scholar

[26] R. Guo, A. G. Talma, R. N. Datta, W.K. Dierkes, J.W.M. Noordermeer, Solubility study of curatives in various rubbers, Eur. Polym. J., 44 (2008) 3890-3893.

DOI: 10.1016/j.eurpolymj.2008.07.054

Google Scholar

[27] G. Liu, M. Hoch, S. Liu, K. Kulbaba, and G. Qiu, Quantitative exploration of the swelling response for carbon black filled hydrogenated nitrile rubber with three-dimensional solubility parameters, polym. Bull., 72 (2015) 1961-(1974).

DOI: 10.1007/s00289-015-1383-7

Google Scholar

[28] A. F. M. Barton, Handbook of solubility parameters and other cohesion parameters 2nd, CRC Press, Boca Raton, 1991, chapter 5.

Google Scholar

[29] S. Hayashi, H. Sakakida, M. Oyama, and T. Nakagawa, Low-temperature properties of hydrogenated nitrile rubber (HNBR), Rub. Chem. Technol., 64 (1991) 534-544.

DOI: 10.5254/1.3538571

Google Scholar

[30] N. Rattanasom, and S. Prasertsri, Relationship among mechanical properties, heat aging resistance, cut growth behaviour and morphology in natural rubber: partial replacement of clay with various types of carbon black at similar hardness level. Poly Test., 28 (2009).

DOI: 10.1016/j.polymertesting.2008.12.010

Google Scholar