Use of Powdered Cordierite as a Transesterification Catalyst in Microwave Assisted Synthesis of Palm Biodiesel

Article Preview

Abstract:

An important phase of the MgO-SiO2-Al2O3 system, α-cordierite was studied for its catalytic transesterification activity in preparing palm biodiesel. The prime drawback of such solid catalyst is its low activity. To overcome this problem, the transesterification was combined with microwave irradiation. The effect of reaction time and catalyst loading on biodiesel yield was investigated in a batch reaction mode. The synthesis of biodiesel was confirmed by 1H NMR spectroscopy. It reveals that an enhanced yield of biodiesel was obtained, whereas the maximum yield was reached in less than 30 min regardless the catalyst loading. As a solid type catalyst, this result becomes a platform to develop the flow mode reaction unit using a cordierite based structured catalyst without modifying surface chemistry of cordierite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

98-102

Citation:

Online since:

September 2016

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Ma and M. A. Hanna: Bioresour Technol Vol. 70 (1999), p.1.

Google Scholar

[2] A. M. Ruhul, M. A. Kalam, H. H. Masjuki, I. M. Rizwanul Fattah, S. S. Reham and M. M. Rashed: RSC Adv Vol. 5 (2015), p.101023.

DOI: 10.1039/c5ra09862a

Google Scholar

[3] A. P. S. Chouhan and A. K. Sarma: Renew Sustain Energy Rev Vol. 15 (2011), p.4378.

Google Scholar

[4] I. K. Mbaraka and B. H. Shanks: J Am Chem Soc Vol. 83 (2006), p.79.

Google Scholar

[5] S. Furuta, H. Matsuhashi and K. Arata: Catal Commun Vol. 5 (2004), p.721.

Google Scholar

[6] J. J. Woodford, J.P. Dacquin, K. Wilson and A. F. Lee: Energy Environ Sci Vol. 5 (2012), p.6145.

Google Scholar

[7] J. L. Williams: Catal Today Vol. 69 (2001), p.3.

Google Scholar

[8] C. Agrafiotis and T. Tsetsekou: J Eur Ceram Soc Vol. 22 (2002), p.423.

Google Scholar

[9] V. G. Gude, P. Patip, E. Martinez-Guerra, S. Deng and N. Nirmalakhandan: Sust Chem Process Vol. 1 (2013), p.1.

Google Scholar

[10] Marwan and E. Indarti: Energy Convers Manag Vol. 117 (2016), p.319.

Google Scholar

[11] P. Lidstrom, J. Tierney, B. Wathey and J. Westman: Tetrahedron Vol. 57 (2001), p.9225.

Google Scholar

[12] M. A. Surati, S. Jauhari S and K. R. Desai: Arc App Sci Res Vol . 4 (2012), p.645.

Google Scholar

[13] F. Motasemi and F.N. Ani: Renew Sustain Energy Rev Vol. 16 (2012), p.4719.

Google Scholar

[14] R. Goren, H. Gocmez and C. Ozgur: Ceram Int Vol. 32 (2006), p.407.

Google Scholar

[15] B. Tang, Y.W. Fang, S.R. Zhang, H.Y. Ning and C.Y. Jing: Indian J Eng Mater Sci Vol. 18 (2011), p.221.

Google Scholar

[16] Y. Liu, F. Luo, J. Su, W. Zhou, D. Zhu and Z. Li: J Alloys Compd Vol. 619 (2015), p.854.

Google Scholar

[17] M. ter-Horst, S. Urbin, R. Burton and C. MacMillan: Lipid Technol Vol. 21 (2009), p.1.

Google Scholar

[18] G. Knothe: J Am Oil Chem Soc Vol. 77 (2000), p.489.

Google Scholar

[19] S. R. Azman, M. Ismail, A. A. H. Kadhum and Z. Yaakob: Int J Auto Mech Eng Vol. 10 (2014), p. (1959).

Google Scholar