(Low-Cycle-) Fatigue Design According to DIN EN 1999-1-3 State of the Art and Current Research

Article Preview

Abstract:

DIN EN 1999-1-3 presents a comprehensive framework for fatigue design of aluminum structures. Various structural details and joints are included. For safety checks against High-Cycle Fatigue, three design concepts are available: Safe-Life-Design, Damage-Tolerant-Design and Design assisted by Testing. Respective safe-life-design lines are based on a databank including results from stress controlled Wöhler fatigue tests. The phenomenon of Low-Cycle-Fatigue (<105 cycles) is treated in Annex F, giving design regulations for selected structural details. Thereby, the influence of different alloys and thus different yield strength values is not considered. In addition, plasticizing effects under high stress ranges are neglected. In general, engineers face the following questions: Which cycle numbers require (Low-Cycle-) fatigue design and thus where is the limit for static design Furthermore, how to define the maximum allowable stress range Respective answers are investigated in a current research project carried out by the Chair of Metal Structures, TU Munich.In this contribution, the state of the art of fatigue design according to DIN EN 1999-1-3 is presented. European design concepts are discussed in view of available data and new developments in research, quality control, fabrication of specimen as well as testing techniques. The focus is then laid on Low-Cycle Fatigue. A new concept, including the influence of alloy type and the effects of plasticizing, is worked on. To this purpose an extensive testing program has started, including a large number of strain-controlled-tests.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

439-444

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DIN EN 1999-1-3, Eurocode 9, Bemessung und Konstruktion von Aluminiumtragwerken, Teil 1-3: Ermüdungsbeanspruchte Tragwerke, Beuth Verlag GmbH, Berlin, (2011).

DOI: 10.31030/1816555

Google Scholar

[2] Kosteas, D., On the Fatigue Service Behavior of Aluminium, Stahlbau Spezial 67 Aluminium in Practice, Ed.: D. Kosteas, Verlag Ernst & Sohn, Berlin, pp.111-130, (1998).

Google Scholar

[3] Kosteas, D., ALUMINIUM DESIGN – CONCEPTS AND TOOLS, The Fifth International Forum on Aluminum Ships Tokyo, Japan 11-13, October, (2005).

Google Scholar

[4] Jaccard, R., On the Fracture Behavior of Aluminium Structural Elements, Stahlbau Spezial 67 Aluminium in Practice, Ed.: D. Kosteas, Verlag Ernst & Sohn, Berlin, pp.54-65, (1998).

Google Scholar

[5] Ondra, R., Kosteas, D., Practice-oriented Design Values for the Crack Propagation of Welded Aluminium Joints, Stahlbau Spezial 67, Verlag Ernst & Sohn, Berlin, pp.108-110, (1998).

Google Scholar

[6] DIN EN 1999-1-1 Eurocode 9, Bemessung und Konstruktion von Aluminiumtragwerken, Teil 1-1: Allgemeine Bemessungsregeln, Beuth Verlag GmbH, Berlin, (2014).

DOI: 10.1002/9783433605103.part2

Google Scholar

[7] Manson, S., Behavior of materials under conditions of thermal stress, National Advisory Committee for Aeronautics (NACA), Report No. 1170, Washington, D.C., (1954).

Google Scholar

[8] Seeger, T., Unterlagen zum Seminar Betriebsfestigkeit auf der Grundlage örtlicher Beanspruchungen, FG Werkstoffmechanik, TU Darmstadt, (1998).

Google Scholar

[9] http: /www. aluservice. de/ratgeber/aluminium/was-sind-aushaertbare-aluminiumlegierungen. html.

Google Scholar

[10] T. Seeger, Grundlagen für Betriebsfestigkeitsnachweise, in s Stahlbau Handbuch 1 Teil B, Köln, Stahlbau-Verlagsgesellschaft mbH, 1996, pp.5-123.

Google Scholar

[11] DIN EN ISO 10042, Schweißen – Lichtbogenschweißverbindungen an Aluminium und seinen Legierungen, Beuth Verlag GmbH, Berlin, (2006).

DOI: 10.31030/2838316

Google Scholar

[12] EN 1090-3, Ausführung von Stahltragwerken und Aluminiumtragwerken – Teil 3: Technische Regeln für die Ausführung von Aluminiumtragwerken, , Beuth Verlag GmbH, Berlin, (2008).

DOI: 10.31030/9877835

Google Scholar

[13] Anthes, R. J., Köttgen, V. B., Seeger T., Kerbformzahlen von Stumpfstößen und Doppel-T-Stößen, Schweißen und Schneiden 45 (1993), Heft 12, p.685 – 688.

Google Scholar

[14] Morgenstern, C., Kerbgrundkonzepte für die schwingfeste Auslegung von Aluminiumschweißverbindungen (AW-5083 und AW-6082 T6), Darmstadt, (2006).

DOI: 10.1002/mawe.200600089

Google Scholar

[15] ISO 12106: Metallic materials – Fatigue testing – Axial-strain-controlled method, the International Organization for Standardization, Geneva, (2003).

Google Scholar