[1]
PN-RECYBETON, RECYBETON: RECYclage complet des BETONs, France, 2011. Recycling concrete: completely recycling concrete into concrete, French National Project.
Google Scholar
[2]
R. Landgren, Water-Vapor Adsorption-Desorption Characteristics of Selected Lightweight Concrete Aggregates, in Proceedings of the American Society for Testing and Materials, Philadelphia, 1964, p.830–845.
Google Scholar
[3]
P. B. Bamforth, CIRIA report: Early-age thermal crack control in concrete., p.112, (2007).
Google Scholar
[4]
NF EN 1097-6, Tests for mechanical and physical properties of aggregates —Part 6: Determination of particle density and water absorption, (2001).
Google Scholar
[5]
A. Katz, Properties of concrete made with recycled aggregate from partially hydrated old concrete, Cem. Concr. Res., vol. 33, p.703–711, (2003).
DOI: 10.1016/s0008-8846(02)01033-5
Google Scholar
[6]
M. Tavakoli and P. Soroushian, Drying shrinkage behavior of recycled aggregate concrete, concrete international, p.58–61, (1996).
Google Scholar
[7]
R. Cortas, E. Rozière, S. Staquet, A. Hamami, A. Loukili, and M. -P. Delplancke-Ogletree, Effect of the water saturation of aggregates on the shrinkage induced cracking risk of concrete at early age, Cem. Concr. Compos., vol. 50, p.1–9, Jul. (2014).
DOI: 10.1016/j.cemconcomp.2014.02.006
Google Scholar
[8]
T. C. Powers, Properties of Fresh Concrete, John Wiley. London, (1968).
Google Scholar
[9]
T. A. Hammer, K. T. Fossa, and Ø. Bjøntegaard, Cracking tendency of HSC: Tensile strength and self generated stress in the period of setting and early hardening, Mater. Struct., vol. 40, p.319–324, (2007).
DOI: 10.1617/s11527-006-9109-9
Google Scholar
[10]
D. Ravina and R. Shalon, Plastic Shrinkage Cracking, ACI J., vol. 65, no. 4, p.282–294, (1968).
Google Scholar
[11]
H. Samouh, A. Soive, E. Rozière, and A. Loukili, Size effect on long-term drying behavior of self-consolidating concrete: influence of drying depth, Mater. Struct., p.1–24, (2015).
DOI: 10.1617/s11527-015-0771-7
Google Scholar
[12]
P. Turcry and A. Loukili, Evaluation of Plastic Shrinkage Cracking of Self-Consolidating Concrete, ACI Mater. J., vol. 103, no. 4, p.272–279, (2006).
DOI: 10.14359/16611
Google Scholar
[13]
H. W. Reinhardt and C. U. Grosse, Continuous monitoring of setting and hardening of mortar and concrete, Constr. Build. Mater., vol. 18, no. 3, p.145–154, (2004).
DOI: 10.1016/j.conbuildmat.2003.10.002
Google Scholar
[14]
E. Roziere, R. Cortas, and A. Loukili, Tensile behaviour of early age concrete: New methods of investigation, Cem. Concr. Compos., vol. 55, p.153–161, (2015).
DOI: 10.1016/j.cemconcomp.2014.07.024
Google Scholar
[15]
A. Z. Bendimerad, E. Roziere, and A. Loukili, Combined experimental methods to assess absorption rate of natural and recycled aggregates, Mater. Struct., vol. 48, no. 11, p.3557–3569, (2015).
DOI: 10.1617/s11527-014-0421-5
Google Scholar
[16]
A. Almusallam, M. Maslehuddin, M. Abdul-Waris, and M. Khan, Effect of mix proportions on plastic shrinkage cracking of concrete in hot environments, Constr. Build. Mater., vol. 12, p.353–358, (1998).
DOI: 10.1016/s0950-0618(98)00019-1
Google Scholar
[17]
S. Zhutovsky, K. Kovler, and A. Bentur, Efficiency of lightweight aggregates for internal curing of high strength concrete to eliminate autogenous shrinkage, Mater. Struct., vol. 35, p.97–101, (2002).
DOI: 10.1007/bf02482108
Google Scholar
[18]
Y. Lee, S. T. Yi, M. S. Kim, and J. K. Kim, Evaluation of a basic creep model with respect to autogenous shrinkage, Cem. Concr. Res., vol. 36, no. 7, p.1268–1278, (2006).
DOI: 10.1016/j.cemconres.2006.02.011
Google Scholar
[19]
A. Z. Bendimerad, E. Roziere, and A. Loukili, Influence of the Proportion of Recycled Gravel on Shrinkage and Cracking Risk: Early Age and Long-Term Behavior, in CONCREEP 10, Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, 2015, p.864.
DOI: 10.1061/9780784479346.102
Google Scholar