[1]
X.L. Gu, W.R. Fu, X.L. Wang, et al, Numerical investigation on damage process of concrete materials and structures, J. Engineering Mechanics. 11(2015) 9-17. (in Chinese).
Google Scholar
[2]
Q.H. Huang, Z.L. Jiang, X.L. Gu, et al, Numerical simulation of moisture transport in concrete based on a pore size distribution model, J. Cement and Concrete Research. 67 (2015) 31-43.
DOI: 10.1016/j.cemconres.2014.08.003
Google Scholar
[3]
Y.P. Xi, Z.P. Bažant, L. Molina, et al, Moisture diffusion in cementitious materials moisture: capacity and diffusivity, J. Advanced Cement Based Materials. 1(6) (1994) 258-266.
DOI: 10.1016/1065-7355(94)90034-5
Google Scholar
[4]
C.Q. Li, K.F. Li, Moisture transport in concrete cover under drying-wetting cycles: theory, experiment and modeling, J. Journal of the Chinese Ceramic Society. 7 (2010) 1151-1159. (in Chinese).
Google Scholar
[5]
V. Baroghel-Bouny, M. Mainguy, T. Lassabatere, et al, Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials, J. Cement and Concrete Research. 29(8) (1999).
DOI: 10.1016/s0008-8846(99)00102-7
Google Scholar
[6]
M. Eskandari-Ghadi, W.P. Zhang, Y.P. Xi, et al, Modeling of moisture diffusivity of concrete at low temperatures, J. Journal of Engineering Mechanics. 139(7) (2013) 903-915.
DOI: 10.1061/(asce)em.1943-7889.0000432
Google Scholar
[7]
Q.H. Huang, Z.L. Jiang, W.P. Zhang, et al, Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation, J. Construction and Building Materials. 37 (2012) 27-35.
DOI: 10.1016/j.conbuildmat.2012.06.074
Google Scholar
[8]
S.D. Abyaneh, H.S. Wong, N.R. Buenfeld, Computational investigation of capillary absorption in concrete using a three-dimensional mesoscale approach, J. Computational Materials Science. 87 (2014) 54-64.
DOI: 10.1016/j.commatsci.2014.01.058
Google Scholar
[9]
S. Kamali-Bernard, F. Bernard, W. Prince, Computer modelling of tritiated water diffusion test for cement based materials, J. Computational Materials Science. 45(2) (2009) 528-535.
DOI: 10.1016/j.commatsci.2008.11.018
Google Scholar
[10]
D.P. Bentz, O.M. Jensen, K.K. Hansen, et al, Influence of cement particle-size distribution on early age autogenous strains and stresses in cement-based materials, J. J. Am. Ceram. Soc. 84(1) (2001) 129-135.
DOI: 10.1111/j.1151-2916.2001.tb00619.x
Google Scholar
[11]
J.J. Zheng, C.Q. Li, Three-dimensional aggregate density in concrete with wall effect, J. ACI Materials Journal. 99(6) (2002) 568-575.
Google Scholar
[12]
E. Winkler, Stone in architecture: properties, durability. Fourth ed., Springer, Berlin, (2013).
Google Scholar
[13]
D.P. Bentz, E.J. Garboczi, Computer modelling of interfacial transition zone: microstructure and properties, J. RILEM REPORT, (1999) 349-385.
Google Scholar
[14]
K. Maekawa, T. Ishida, T. Kishi, Multi-scale modeling of structural concrete. CRC, London (2008).
Google Scholar
[15]
Y.P. Zhang, L.Z. Zhang, X.H. Liu, et al, Architectural and environmental mass transfer. China Architecture Industry Press, Beijing, 2006. (in Chinese).
Google Scholar
[16]
C.Q. Li, K.F. Li, Z.Y. Chen, Research on the boundary condition of moisture transport in concrete, J. Engineering Mechanics. 26(8) (2009) 74-81. (in Chinese).
Google Scholar
[17]
Q.Z. Zhang, X.L. Gu, W.P. Zhang, et al, Model on capillary pressure-saturation relationship for concrete, J. Journal of Tongji University (Natural Science). 40(12) (2013) 1753-1759. (in Chinese).
Google Scholar
[18]
J.D. Shane, T.O. Mason, H.M. Jennings, et al. Effect of the interfacial transition zone on the conductivity of Portland cement mortars, J. Journal of the American Caramic Society, 83(5) 2000 1137-1144.
DOI: 10.1111/j.1151-2916.2000.tb01344.x
Google Scholar