[1]
F. Rajabipour, E. Giannini, C. Dunant, J.H. Ideker, MDA Thomas, Alkali-silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cement and Concrete Res. 76, 2015, pp.130-146.
DOI: 10.1016/j.cemconres.2015.05.024
Google Scholar
[2]
R. Pleau, M-A. Bérubé, M. Pigeon, B. Fournier, S. Raphaël, Mechanical behaviour of concrete affected by ASR, in: Elsevier Applied Science (England) (Eds), Proc. of the 8th ICAAR, Kyoto, Japan, 1989, p.721–726.
Google Scholar
[3]
H.W. Reinhardt, O. Mielich, Mechanical properties of concretes with slowly reacting alkali sensitive aggregates, in: Conference Proceedings of the 14th ICAAR, Austin, TX, USA, (2012).
Google Scholar
[4]
O. Mielich, H.W. Reinhardt, H. Garrecht, C. Giebson, K. Seyfarth, H.M. Ludwig, Strength and deformation properties of concrete as evaluation criteria for ASR performance tests. Beton- und Stahlbetonbau 110, 2015, pp.554-563 (in German).
DOI: 10.1002/best.201500018
Google Scholar
[5]
G.E. Blight, Engineering properties of reinforced concrete damaged by AAR, 10th Intern. Conf. on alkali aggregate reaction in concrete, Melbourne, Australia, 1996, pp.987-994.
Google Scholar
[6]
A. Le Roux, E. Massieu, B. Godart, Evolution under stress of a concrete affected by aar. Application to the feasibility of strengthening a bridge by prestressing, in: The ninth international conference on alkali-aggregate reaction in concrete, Volume 2, London, 1992, pp.559-606.
Google Scholar
[7]
C. Larive, Apports combinés de l'expérimentation et de la modélisation a la compréhension de l'alkali-réaction et de ses effets mécaniques, Ph.D. thesis, Ecole nationale des ponts et chausses, (1997).
DOI: 10.3166/rcma.27.123-136
Google Scholar
[8]
S. Multon, F. Toutlemonde, Effect of applied stresses on alkali-silica reaction-induced expansions. Cement and Concrete Res. 36, 2006, pp.912-920.
DOI: 10.1016/j.cemconres.2005.11.012
Google Scholar
[9]
C. Dunant, Experimental and modelling study of the alkali-silica reaction in concrete, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, n°4510, (2009).
Google Scholar
[10]
A.B. Giorla, Modelling of alkali-silica reaction under multi-axial load, Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, n°5982, (2013).
Google Scholar
[11]
A.B. Giorla, K.L. Scrivener, C.F. Dunant, Influence of visco-elasticity on the stress development induced by alkali-silica reaction. Cem. Concr. Res. 70, 2015, pp.1-8.
DOI: 10.1016/j.cemconres.2014.09.006
Google Scholar
[12]
H. Özkan, H.W. Reinhardt, O. Mielich, Experimental study on creep behavior of alkali-silica reaction (ASR) damaged concrete with slow/late aggregates, in: Conference Proceedings of CONCREEP-10, Vienna, 2015, pp.1570-1578.
DOI: 10.1061/9780784479346.183
Google Scholar
[13]
O. Mielich, H. Özkan, H.W. Reinhardt, Creep behavior of alkali-silica reaction damaged concrete with slow-reacting aggregates, in: Conference Proceedings of the 15th ICAAR, Sao Paulo, Brazil, 2016, (submitted).
DOI: 10.1061/9780784479346.183
Google Scholar
[14]
J. Stark, K. Seyfarth, Assessment of specific pavement concrete mixtures by using an ASR performance-test, in: M.A.T.M. Broekmans, B.J. Wigum (Eds. ), Proceedings of the 13th ICAAR, Trondheim, Norway, 2008, pp.686-695.
Google Scholar
[15]
L. Franke, S. Witt, Accelerated test for alkali reaction: application of an internationally recognized quick test to German conditions, Concrete Plant + Precast Technology 70, No. 5, 2004, pp.14-21.
Google Scholar
[16]
R.E. Oberholster, G. Davies, An accelerated method for testing the potential alkali reactivity of siliceous aggregates. Cement and Concrete Res. 16, No. 2, 1986, pp.181-189.
DOI: 10.1016/0008-8846(86)90134-1
Google Scholar
[17]
RILEM Recommended Test Method AAR-2 (2000), Detection of Potential Alkali-Reactivity of Aggregates. The Ultra accelerated Mortar-bar Test, Materials and Structures 33, No. 229, 2000, pp.283-289.
DOI: 10.1007/bf02479697
Google Scholar
[18]
O. Mielich, Contribution to the damage mechanisms in concrete with slow-reacting alkali sensitive aggregates, DAfStb bulletin 583, Berlin, 2010 (in German).
Google Scholar
[19]
C. Giebson, K. Seyfarth, J. Stark, Influence of acetate and formate-based deicers on ASR in airfield concrete pavements, Cement and Concrete Res. 40, 2010, pp.537-545.
DOI: 10.1016/j.cemconres.2009.09.009
Google Scholar
[20]
J. Lindgard, M.D.A. Thomas, E.J. Sellevold, B. Pedersen, Ö. Andic-Cakir, H. Justnes, T.F. Ronning, Alkali-silica reaction (ASR) performance testing: Influence of specimen pre-treatment, exposure conditions and prism size on alkali leaching and prism expansion, Cement and Concrete Res. 53, 2013, pp.68-90.
DOI: 10.1016/j.cemconres.2013.05.017
Google Scholar
[21]
J. Stark, K. Seyfarth, C. Giebson, Beurteilung der Alkali-Reaktivität von Gesteinskörnungen und AKR-Performance-Prüfung von Beton, 16. Internationale Baustofftagung (ibausil), Tagungsbericht Band 2, Weimar, 2006, pp.399-426.
DOI: 10.1002/best.200590271
Google Scholar
[22]
A. Dressler, L. Urbonas, D. Heinz, ASR in fly ash concrete with duran glass exposed to external alkalis, in: Concference Proceedings International Congress on Durability of Concrete, ICDC 2012, Trondheim, Norway.
Google Scholar
[23]
H.W. Reinhardt, O. Mielich, Fracture toughness of alkali-sensitive rocks in alkaline solution, International Journal of Rock Mechanics & Mining Sciences 70, 2014, pp.552-558.
DOI: 10.1016/j.ijrmms.2014.06.014
Google Scholar
[24]
O. Copuroglu, E. Schlangen, Ö. Andic-Cakir, E. Garcia-Diaz, Effect of silica dissolution on the mechanical characteristics of alkali-reactive aggregates, Journal Advanced Concrete Technology 8 (1), 2010, pp.5-14.
DOI: 10.3151/jact.8.5
Google Scholar
[25]
M. Ben Haha, Mechanical effects of alkali silica reaction in concrete studied by sem-image analysis, Ph.D. thesis, Ecole Polytechnique Federale de Lausanne, n°3516, (2006).
Google Scholar
[26]
U.J. Counto, The effect of the elastic modulus of the aggregate on the elastic modulus, creep and creep recovery of concrete, Magazine of Concrete Research, Volume 16, Issue 48, 1964, pp.129-138.
DOI: 10.1680/macr.1964.16.48.129
Google Scholar