Temperature Distribution on the Surface of LED Lamps

Article Preview

Abstract:

In this work, new thermally conductive polymer materials (TCPMs) on the base of polymer/graphite composites for cooling system of LED lamps were developed. Heat sinks for LED lamps were fabricated and investigated. Thermal conductivity and thermal diffusivity for all TCPMs were investigated by thermal analyzers XFA 500 and THB 100. Infrared thermal imager was used to study the temperature distribution of the LED lamps. Experimental and numerical investigations have shown high efficiency of polymer/graphite heat sinks for LED lamps.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

351-356

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Luo, S. Liu, A microjet array cooling system for thermal management of high-brightness LEDs, Adv. Packag. IEEE Trans. 30 (2007) 475–484.

DOI: 10.1109/tadvp.2007.898522

Google Scholar

[2] X. Luo, W. Chen, R. Sun, S. Liu, Experimental and numerical investigation of a microjet-based cooling system for high power LEDs, Heat. Transf. Eng. 29 (2008) 774–781.

DOI: 10.1080/01457630802053777

Google Scholar

[3] Y. Deng, J. Liu, A liquid metal cooling system for the thermal management of high power LEDs, Int. Commun. Heat. Mass Transf. 37 (2010) 788–791.

DOI: 10.1016/j.icheatmasstransfer.2010.04.011

Google Scholar

[4] L. Kim, J.H. Choi, S.H. Jang, M.W. Shin, Thermal analysis of LED array system with heat pipe, Thermochim. Acta 455 (2007) 21–25.

DOI: 10.1016/j.tca.2006.11.031

Google Scholar

[5] X. -Y. Lu, T. -C. Hua, Y. -P. Wang, Thermal analysis of high power LED package with heat pipe heat sink, Microelectron. J. 42 (2011) 1257–1262.

DOI: 10.1016/j.mejo.2011.08.009

Google Scholar

[6] Y. Tang, X. Ding, B. Yu, Z. Li, B. Liu, A high power LED device with chips directly mounted on heat pipes, Appl. Therm. Eng. 66 (2014) 632–639.

DOI: 10.1016/j.applthermaleng.2014.02.067

Google Scholar

[7] www. coolpolymers. com/heattrans. html.

Google Scholar

[8] J.L. Zeng, Z. Cao, D.W. Yang, L.X. Sun, L. Zhang, Thermal conductivity enhancement of Ag nanowires on an organic phase change material, J. Therm. Analysis Calorim. 101 (2010) 385–389.

DOI: 10.1007/s10973-009-0472-y

Google Scholar

[9] S.H. Song, K.H. Park, B.H. Kim, Y.W. Choi, G.H. Jun, D.J. Lee, B.S. Kong, K.W. Paik, S. Jeon, Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization, Adv. Mater. 25 (2013).

DOI: 10.1002/adma.201202736

Google Scholar

[10] J. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review, Prog. Polym. Sci. 36 (2011) 914–944.

DOI: 10.1016/j.progpolymsci.2010.11.004

Google Scholar

[11] Y. -X. Fu, Z. -X. He, D. -C. Mo, S. -S. Lu, Thermal conductivity enhancement with different fillers for epoxy resin adhesives, Appl. Therm. Eng. 66 (2014) 493–498.

DOI: 10.1016/j.applthermaleng.2014.02.044

Google Scholar

[12] S.M. Lebedev, O.S. Gefle, S.N. Dneprovskii, E.T. Amitov, Thermophysical properties of polymeric materials with high thermal conductivity, Russian Physics Journal, 58 (2015) 266–270.

DOI: 10.1007/s11182-015-0491-z

Google Scholar

[13] G.C. Glatzmaier and W. F. Ramirez, Simultaneous measurement of the thermal conductivity and thermal diffusivity of unconsolidated materials by the transient hot wire method, Rev. Sci. Instrum. 56 (1985) 1394–1398.

DOI: 10.1063/1.1138491

Google Scholar

[14] W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott, A flash method of determining thermal diffusivity, heat capacity, and thermal conductivity, J. Appl. Phys. 32 (1961) 1679–1684.

DOI: 10.1063/1.1728417

Google Scholar