Ballistic Performance of a Transparent Inter-Layered Specimen by a Long-Rod Impact

Article Preview

Abstract:

Ballistic performance has been studied by impacting a long rod projectile into a bulk glass material and a layered specimen. The shock wave interaction on the material boundaries showed that it greatly influences the fracture configuration of glass material. A high speed photographic technique was applied in the experiment to observe the shock wave interaction and damage evolution in the bulk material. Transparent BK7 glass was used as the main material to observe the dynamic fracture phenomena. The depth of penetration (DOP) was measured to assess the ballistic efficiency of the bulk specimen compared with specimens that consisted of selected inter-layer materials, specifically rubber and a steel plate. The obtained results show that the use of a lower impedance material as an inter-layer is effective to enhance the ballistic performance while reducing the shock amplitude and delaying the wave propagation. These findings are in good agreement with the results of a numerical analysis using AUTODYN.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-62

Citation:

Online since:

September 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Borvic T, Langseth, M, Hopperstad, O. S., Malo K. A., Ballistic penetration of steel plates, Int J Impact Eng. 22 (1999) pp.855-885.

DOI: 10.1016/s0734-743x(99)00011-1

Google Scholar

[2] Sorensen, B. R., Kimsey, K. D., Silsby, G. F., Scheffler, D. R., Sherrick, T. M., Derosset, W. S., High velocity penetration of steel targets, Int J Impact Eng. 11 (1991) pp.107-119.

DOI: 10.1016/0734-743x(91)90034-d

Google Scholar

[3] Anderson, C. E., Morris, B. L., The ballistic performance of confined Al2O3 ceramic tiles, Int J Impact Eng. 12 (1992) pp.167-187.

DOI: 10.1016/0734-743x(92)90395-a

Google Scholar

[4] Collombet, F., Lalbin, X., Latailade, J. L., Impact behavior of laminated composites: physical basis for finite element analysis, Compos Sci Technol. 58 (1998) pp.463-478.

DOI: 10.1016/s0266-3538(97)00146-2

Google Scholar

[5] Vaidya, U. K., Deka, L. J., Bartus, S. D., Damage evolution and energy absorption of E-glass/polypropylene laminates subjected to ballistic impact, J Mater Sci. 43 (2008) pp.4399-4410.

DOI: 10.1007/s10853-008-2595-0

Google Scholar

[6] Yadav, S., Ravichandran, G., Penetration resistance of laminated ceramic/polymer structure, Int J Impact Eng. 28 (2003) pp.557-574.

DOI: 10.1016/s0734-743x(02)00122-7

Google Scholar

[7] Liu, L. S., Zhang, Q. J., Zhai, P. C., Zhu, C. C., Impact Characteristic analysis of ceramic/metal FGM, Mater Sci Forum. 423-425 (2003) pp.641-644.

DOI: 10.4028/www.scientific.net/msf.423-425.641

Google Scholar

[8] Gama, B. A., Bogetti, T. A., Fink, B. K., Yu, C. J., Claar, T. D., Eifert, H. H., Aluminum foam integral armor: a new dimension in armor design, Compos Struct. 52 (2001) pp.381-395.

DOI: 10.1016/s0263-8223(01)00029-0

Google Scholar

[9] Abrate, S., Wave propagation in lightweight composite armors, J Phys IV. 110 (2003) pp.657-662.

DOI: 10.1051/jp4:20020768

Google Scholar

[10] Johnson, W., Impact strength of materials. Edward Arnold, (1972).

Google Scholar

[11] Tasdemirci, A., Tunusoglu, G., Güden, M., The effect of the interlayer on the ballistic performance of ceramic/composite armors: Experimental and numerical study, Int J Impact Eng. 44 (2012) pp.1-9.

DOI: 10.1016/j.ijimpeng.2011.12.005

Google Scholar

[12] Mines, R. A. W. A one-dimensional stress wave analysis of lightweight composite armor, Compos Struct. 64 (2004) pp.55-62.

Google Scholar

[13] Gupta, Y. M., Ding, J. L. Impact load spreading in layered materials and structures: concept and quantitative measure, Int J Impact Eng. 27 (2002) pp.277-191.

DOI: 10.1016/s0734-743x(01)00051-3

Google Scholar

[14] Subramanian, R., Bless, S. J., Penetration of semi-infinite AD995 alumina targets by tungsten long rod penetrators from 1. 5 to 3. 5 km/s, Int J Impact Eng. 17 (1995) pp.807-816.

DOI: 10.1016/0734-743x(95)99901-3

Google Scholar

[15] El-Raheb, M., Transient elastic waves in finite layered media: one-dimensional analysis, J Accoust Soc Am. 95(6) (1993) pp.3287-3299.

Google Scholar

[16] Lee, W., Clegg, W. J., The deflection of cracks at interface, Materials. 116 (1996) pp.193-208.

Google Scholar