Silica Sol-Gel Patterned Surfaces Based on Dip-Pen Nanolithography and Microstamping: A Comparison in Resolution and Throughput

Article Preview

Abstract:

Fabrication of patterns on silicon and gold via Dip-Pen Nanolithography (DPN) using silica sol as ink and the combination of DPN, soft lithography, and silica sol-gel to transfer patterns from silicon and gold to stainless steel were assessed. In addition, a comparison in terms of throughput and resolution of both protocols was performed. Optical, scanning electron and atomic force microscopy were used to characterize the patterns. Silica sol showed high resolution but low throughput when used to pattern directly on gold and silicon using DPN. The combination of DPN, silica sol-gel and soft lithography showed high throughput and resolution. The present experimental methodology was useful to create patterns on a surface and transfer them to another surface of interest, which may serve as a biomaterial surface modification model.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

264-268

Citation:

Online since:

November 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xia Y, Whitesides GM. Soft Lithography. Angew Chem Int Ed. 1998; 37: 550-75.

Google Scholar

[2] Lee KB, Park SJ, Mirkin CA, Smith JC, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography. Science. 2002 Mar 1; 295(5560): 1702-5.

DOI: 10.1126/science.1067172

Google Scholar

[3] Wilson DL, Martin R, Hong S, Cronin-Golomb M, Mirkin CA, Kaplan DL. Surface organization and nanopatterning of collagen by dip-pen nanolithography. Proc Natl Acad Sci U S A. 2001 Nov 20; 98(24): 13660-4.

DOI: 10.1073/pnas.241323198

Google Scholar

[4] Gilles S, Tuchscherer A, Lang H, Simon U. Dip-pen-based direct writing of conducting silver dots. J Colloid Interface Sci. 2013 Sep 15; 406: 256-62.

DOI: 10.1016/j.jcis.2013.05.047

Google Scholar

[5] Arcos D, Vallet-Regi M. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomater. 2010 Aug; 6(8): 2874-88.

DOI: 10.1016/j.actbio.2010.02.012

Google Scholar

[6] García C, Ceré S, Durán A. Bioactive coatings prepared by sol–gel on stainless steel 316L. J Non-Crystal Sol. 2004; 348: 218-24.

DOI: 10.1016/j.jnoncrysol.2004.08.172

Google Scholar

[7] Singh LP, Bhattacharyya S, Ahalawat S, Kumar R, Mirshra G, Sharma U, et al. Sol-Gel processing of silica nanoparticles and their applications. Adv Colloid Interface Sci. 2014; 214: 17-37.

DOI: 10.1016/j.cis.2014.10.007

Google Scholar

[8] Carvalho A, Pelaez-Vargas A, Gallego-Perez D, Grenho L, Fernandes MH, De Aza AH, et al. Micropatterned silica thin films with nanohydroxyapatite micro-aggregates for guided tissue regeneration. Dent Mater. 2012 Dec; 28(12): 1250-60.

DOI: 10.1016/j.dental.2012.09.002

Google Scholar

[9] Pelaez-Vargas A, Gallego-Perez D, Carvalho A, Fernandes MH, Hansford DJ, Monteiro FJ. Effects of density of anisotropic microstamped silica thin films on guided bone tissue regeneration-in vitro study. J Biomed Mater Res B Appl Biomater. 2013 Jul; 101(5): 762-9.

DOI: 10.1002/jbm.b.32879

Google Scholar

[10] Pelaez-Vargas A, Ferrel N, Fernandes MH, Hansford DJ, Monteiro FJ. Cellular Alignment Induction during Early In Vitro Culture Stages Using Micropatterned Glass Coatings Produced by Sol-Gel Process. Key Eng Mater. 2009; 396-398: 303-6.

DOI: 10.4028/www.scientific.net/kem.396-398.303

Google Scholar

[11] Chung KK, Schumacher JF, Sampson EM, Burne RA, Antonelli PJ, Brennan AB. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases. 2007 Jun; 2(2): 89-94.

DOI: 10.1116/1.2751405

Google Scholar

[12] Rahmany MB, Van Dyke M. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review. Acta Biomater. 2013 Mar; 9(3): 5431-7.

DOI: 10.1016/j.actbio.2012.11.019

Google Scholar

[13] Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS Bull. 2011 May; 36(5): 347-55.

DOI: 10.1557/mrs.2011.65

Google Scholar

[14] Hochbaum AI, Aizenberg J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Lett. 2010 Sep 8; 10(9): 3717-21.

DOI: 10.1021/nl102290k

Google Scholar

[15] Horcas I, Fernandez R, Gomez-Rodriguez JM, Colchero J, Gomez-Herrero J, Baro AM. WSXM: A software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum. 2007; 78: 013705.

DOI: 10.1063/1.2432410

Google Scholar

[16] Su M, Liu X, Li SY, Dravid VP, Mirkin CA. Moving beyond molecules: patterning solid-state features via dip-pen nanolithography with sol-based inks. J Am Chem Soc. 2002 Feb 27; 124(8): 1560-1.

DOI: 10.1021/ja012502y

Google Scholar

[17] Kane RS, Takayama S, Ostuni E, Ingber DE, Whitesides GM. Patterning proteins and cells using soft lithography. Biomaterials. 1999; 20: 2363-76.

DOI: 10.1016/b978-008045154-1/50020-4

Google Scholar

[18] Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE. Soft lithography in biology and biochemistry. Annu Rev Biomed Eng. 2001; 3: 335-73.

DOI: 10.1146/annurev.bioeng.3.1.335

Google Scholar